首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper discusses the equilibrium instability problem of the scleronomic nonholonomic systems acted upon by dissipative, conservative, and circulatory forces. The method is based on the existence of solutions to the differential equations of the motion which asymptotically tends to the equilibrium state of the system as t tends to negative infinity. It is assumed that the kinetic energy, the Rayleigh dissipation function, and the positional forces in the neighborhood of the equilibrium position are infinitely differentiable functions. The results obtained here are partially generalized the results obtained by Kozlov et al. (Kozlov, V. V. The asymptotic motions of systems with dissipation. Journal of Applied Mathematics and Mechanics, 58^(5), 787–792 (1994). Merkin, D. R. Introduction to the Theory of the Stability of Motion (in Russian), Nauka, Moscow (1987). Thomson, W. and Tait, P. Treatise on Natural Philosophy, Part I, Cambridge University Press, Cambridge (1879)). The results are illustrated by an example.  相似文献   

2.
Lyapunov's first method, extended by V. V. Kozlov to nonlinear mechani- cal systems, is applied to the study of the instability of the position of equilibrium of a mechanical system moving in the field of conservative and dissipative forces. The mo- tion of the system is limited by ideal nonlinear nonholonomic constraints. Five cases determined by the relationship between the degree of the first nontrivial polynomials in Maclaurin's series for the potential energy and the functions that can be generated from the equations of nonlinear nonholonomic constraints are analyzed. In the three eases, the theorem on the instability of the position of equilibrium of nonholonomic systems with linear homogeneous constraints (V. V. Kozlov (1986)) is generalized to the case of nonlin- ear nonhomogeneous constraints. In the other two cases, new theorems are set extending the result from V. V. Kozlov (1994) to nonholonomic systems with nonlinear constraints.  相似文献   

3.
Lyapunov’s first method, extended by Kozlov to nonlinear mechanical systems, is applied to study the instability of the equilibrium position of a mechanical system moving in the field of conservative and dissipative forces. The cases with a tensor of inertia or a matrix of coefficients of the Rayleigh dissipative function are analyzed singularly in the equilibrium position. This fact renders the impossible application of Lyapunov’s approach in the analysis of the stability because, in the equilibrium position, the conditions of the existence and uniqueness of the solutions to the differential equations of motion are not fulfilled. It is shown that Kozlov’s generalization of Lyapunov’s first method can also be applied in the mentioned cases on the conditions that, besides the known algebraic expression, more are fulfilled. Three theorems on the instability of the equilibrium position are formulated. The results are illustrated by an example.  相似文献   

4.
The interaction between a screw dislocation and a circular inhomogeneity in gradient elasticity is investigated. The screw dislocation is located inside either the inhomogeneity or the matrix. By using the Fourier transform method, closed analytical solutions are obtained when the inhomogeneity and the matrix have the same gradient coefficient. The explicit expressions of image forces exerted on screw dislocations are derived. The motion of the appointed screw dislocation and its equilibrium positions are discussed. The results show that the classical singularity is eliminated. Especially, for the case of a tiny inhomogeneity, the relation of dislocations and inhomogeneities become quite different. The screw dislocation may be attracted by the stiff inhomogeneity and repelled by the soft inhomogeneity when it tends to the interface. So there is an unstable equilibrium position when a dislocation tends to a tiny stiff inhomogeneity and there is a stable equilibrium position when a dislocation tends to a tiny soft inhomogeneity.  相似文献   

5.
Dissipative dynamical systems part I: General theory   总被引:14,自引:0,他引:14  
The first part of this two-part paper presents a general theory of dissipative dynamical systems. The mathematical model used is a state space model and dissipativeness is defined in terms of an inequality involving the storage function and the supply function. It is shown that the storage function satisfies an a priori inequality: it is bounded from below by the available storage and from above by the required supply. The available storage is the amount of internal storage which may be recovered from the system and the required supply is the amount of supply which has to be delivered to the system in order to transfer it from the state of minimum storage to a given state. These functions are themselves possible storage functions, i.e., they satisfy the dissipation inequality. Moreover, since the class of possible storage functions forms a convex set, there is thus a continuum of possible storage functions ranging from its lower bound, the available storage, to its upper bound, the required supply. The paper then considers interconnected systems. It is shown that dissipative systems which are interconnected via a neutral interconnection constraint define a new dissipative dynamical system and that the sum of the storage functions of the individual subsystems is a storage function for the interconnected system. The stability of dissipative systems is then investigated and it is shown that a point in the state space where the storage function attains a local minimum defines a stable equilibrium and that the storage function is a Lyapunov function for this equilibrium. These results are then applied to several examples. These concepts and results will be applied to linear dynamical systems with quadratic supply rates in the second part of this paper.This research was supported in part by the National Science Foundation under Grant No. GK-25781 and in part by the U.K. Science Research Council. This paper was prepared while the author was a Senior Visiting Fellow at the Department of Applied Mathematics and Theoretical Physics of the University of Cambridge, Cambridge, England.  相似文献   

6.
In this paper, the relationship between the plastic and intrinsic dissipations is addressed within the normality structure of [Rice, J.R., 1971. Inelastic constitutive relations for solids: an integral variable theory and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455; Rice, J.R., 1975. Continuum mechanics and thermodynamics of plasticity in relation to microscale deformation mechanisms. In: Argon, A.S. (Ed.), Constitutive Equations in Plasticity. MIT Press, Cambridge, MA, pp. 23–79.] It is shown that the plastic dissipation is generally not equal to the intrinsic dissipation. Within the normality structure, the microscale and macroscale thermodynamic fluxes and forces are related by the conditions of energy and dissipation equivalence. If the plastic dissipation is required to be equal to the intrinsic dissipation, J2 potential and the Levy–Mises equation are recovered from the condition of dissipation equivalence for incompressible plastic flows.  相似文献   

7.
考虑损伤的内变量黏弹-黏塑性本构方程   总被引:1,自引:0,他引:1  
张泷  刘耀儒  杨强  薛利军 《力学学报》2014,46(4):572-581
基于Rice 不可逆内变量热力学框架,在约束构型空间中讨论材料的蠕变损伤问题. 通过给定具体的余能密度函数和内变量演化方程推导出考虑损伤的内变量黏弹-黏塑性本构方程. 通过模型相似材料单轴蠕变加卸载试验对一维情况下的本构方程进行参数辨识和模型验证,本构方程能很好地描述黏弹性变形和各蠕变阶段.不同的蠕变阶段具有不同的能量耗散特点. 受应力扰动后,不考虑损伤的材料系统能自发趋于热力学平衡态或稳定态. 在考虑损伤的整个蠕变过程中,材料系统先趋于平衡态再背离平衡态发展. 能量耗散率可作为材料系统热力学状态偏离平衡态的测度;能量耗散率的时间导数可用于表征系统的演化趋势;两者的域内积分值可作为结构长期稳定性的评价指标.   相似文献   

8.
Some non-trivial effects are investigated, which can occur if strongly damped mechanical systems are subjected to strong high-frequency (HF) excitation. The main result is a theoretical prediction, supported by numerical simulation, that for such systems the (quasi-) equilibrium states can change substantially with the level of damping. For example, a strongly damped pendulum, with a hinge vibrated at high frequency along an elliptical path with horizontal or vertical axis, will line up along a line offset from the vertical; the offset vanishes for very light or very strong damping, attaining a maximum that can be substantial (depending on the strength of the HF excitation) for finite values of the damping. The analysis is focused on the differences between the classic results for weakly damped systems, and new effects for which the strong damping terms are responsible. The analysis is based on a slightly modified averaging technique, and includes an elementary example of an elliptically excited pendulum for illustration, alongside with a generalization to a broader class of strongly damped dynamical systems with HF excitation. As an application example, the non-trivial behavior of a classical optimally controlled non-linear system is investigated, illustrating how HF excitation may cause the controller to leave the system in an unexpected equilibrium state, quite different from the setpoint. The effects can be interesting for specialists in control of mechanical systems and structures. However the obtained results are more general. Similar effects could be expected first of all for microsystems where damping forces are typically dominating over inertia forces.  相似文献   

9.
In this paper, a difference scheme with energy dynamic equilibrium (DS-EDE) is presented, which can be used for the simulation of long-term atmosphere and sea motion. Based on three dimensional nonlinear evolution equations for atmosphere and sea motion, a three dimensional compact upwind scheme (CUWS) is constructed, as the basis of the DS-EDE. The DS-EDE satisfies the following condition of energy dynamic equilibrium (EDE): the total work of external forces on the region boundary is equal to the sum of the total effective variation of the kinetic energy and the energy dissipation in the average flow motion and the effective variation of the potential energy per unit time within the region of interest. It really reflects the basic mechanism of the action of external forces and dissipation in atmosphere and sea movement. Therefore, the DS-EDE developed in this paper is a suitable model for simulating long-term atmosphere and sea movement with forcing and dissipation.  相似文献   

10.
We analyze the extendability of the solutions to a certain second order differential equation on a Riemannian manifold (M, g), which is defined by a general class of forces (both prescribed on M or depending on the velocity). The results include the general time-dependent anholonomic case, and further refinements for autonomous systems or forces derived from a potential are obtained. These extend classical results for Lagrangian and Hamiltonian systems. Several examples show the optimality of the assumptions as well as the utility of the results, including an application to relativistic pp-waves.  相似文献   

11.
The paper continues the works of V.V. Kozlov and E.M. Nikishin on the free Hamiltonian mechanics in space-time. A Lagrangian introduction to the theory is given. The Lorentz-invariant problem of two bodies is considered.  相似文献   

12.
The range of the characteristic properties of repulsive clathrates (RCs), which are new working media used for efficient energy conversion in thermomechanical systems, has been extended. The dissipation, storage, and conversion of energy by means of RCs is based on the use of the intermolecular forces acting on the interface of the system of a liquid and a nonwetting solid capillaryporous matrix and leading to ejection of the liquid from the pores of the matrix. It has been shown that it is possible to control characteristics of RCs such as compressibility, amount of the dissipated (accumulated) mechanical energy, specific heat, and thermal parameters of the compression-expansion process. The properties of RCs providing unique operation modes of power systems that are not realizable with conventional working media (gas, steam).  相似文献   

13.
The equilibrium stability of a horizontal fluid layer with homogeneous internal heat release is investigated theoretically for the case in which the layer simultaneously undergoes high-frequency circular vibration in a horizontal plane and rotates about a vertical axis. The rotation frequency is assumed to be small as compared with the vibration frequency. It is found that the rotation has a stabilizing effect on the vibrational-gravitational convection. At the high-frequency limit the dependence of the critical values of the controlling parameters (gravitational and vibrational Rayleigh numbers) and the wave number on the rotation frequency is obtained.__________Translated from Izvestiya Rossiiskoi Academii Nauk, Mekhanika Zhidkosti i Gaza, No. 1, 2005, pp. 53–61. Original Russian Text Copyright © 2005 by Ivanova, Kozlov, and Kolesnikov.  相似文献   

14.
A circular system is a mechanical system subjected to potential forces and positional nonconservative forces (circular forces). The latter linearly depend on the coordinates and are characterized by a skew-symmetric matrix. The influence of linear dissipative forces on the stability of a circular system is ambiguous: on the one hand, they can stabilize a stable circular system (making it asymptotically stable); on the other hand, they can destabilize it [1–4]. The action of linear dissipative forces on a circular system results in the so-called destabilization paradox: the stability threshold decreases by a finite value.A detailed survey of this phenomenon can be found in [5]. The destabilization effect is also preserved under the action of nonlinear dissipative forces. The influence of these forces on the stability of the Ziegler pendulum with a tracking force was studied in [6]. It was shown that the critical value of the tracking force decreases by a finite value. A similar effect was discovered in the analysis of a continual system in [7].In the present paper, we study how nonlinear dissipative forces affect the stability of the equilibrium of a circular mechanical system with two degrees of freedom. The stability problem is solved without any references to specific mechanical systems. The results are used to analyze the stability of a gimbal gyro with allowance for dry friction in the rotor bearings.  相似文献   

15.
An Internal Damping Model for the Absolute Nodal Coordinate Formulation   总被引:1,自引:0,他引:1  
Introducing internal damping in multibody system simulations is important as real-life systems usually exhibit this type of energy dissipation mechanism. When using an inertial coordinate method such as the absolute nodal coordinate formulation, damping forces must be carefully formulated in order not to damp rigid body motion, as both this and deformation are described by the same set of absolute nodal coordinates. This paper presents an internal damping model based on linear viscoelasticity for the absolute nodal coordinate formulation. A practical procedure for estimating the parameters that govern the dissipation of energy is proposed. The absence of energy dissipation under rigid body motion is demonstrated both analytically and numerically. Geometric nonlinearity is accounted for as deformations and deformation rates are evaluated by using the Green–Lagrange strain–displacement relationship. In addition, the resulting damping forces are functions of some constant matrices that can be calculated in advance, thereby avoiding the integration over the element volume each time the damping force vector is evaluated.  相似文献   

16.
In this paper, we propose a quasi-3D continuum model to study the rate-independent hysteresis phenomenon in phase transitions of a slender shape memory alloy (SMA) cylinder subject to the uniaxial tension. Based on the three-dimensional field equations and the traction-free boundary conditions, by using a coupled series-asymptotic expansion method, we manage to express the total elastic potential energy of the cylinder in terms of the leading order term of the axial strain. We further consider the rate-independent dissipation effect in a purely one-dimensional setting. The mechanical dissipation functions are also expressed in terms of the axial strain. The equilibrium configuration of the cylinder is then determined by using the principle of maximizing the total energy dissipation. An illustrative example with some special chosen material constants is further considered. Free end boundary conditions are proposed at the two ends of the cylinder. By conducting a phase plane analysis and through some calculations, we obtain the analytical solutions of the equilibrium equation. We find that the engineering stress–strain curves corresponding to the obtained solutions can capture some important features of the experimental results. It appears that the analytical results obtained in this paper reveal the multiple solutions nature of the problem and shed certain light on the instability phenomena during the phase transition process.  相似文献   

17.
The problem of defining the driving force for interface propagation in inelastic materials is discussed. In most publications, the driving force coincides with the Eshelby driving force, i.e. it represents a total dissipation increment on the moving interface due to all the dissipative processes (phase transition (PT) and plasticity). Recently (Levitas, V.I., 1992a. Post-bifurcation Behaviour in Finite Elastoplasticity. Applications to Strain Localization and Phase Transitions. Universität Hannover. Insititut für Baumecharik and Numerische Mechanik, [BNM-Bencht 1JP 585-LC, 92/5, Hannover; Int. J. Eng. Sci. 33 (1995) 921; Mech. Res. Commun. 22 (1995) 87; J. de Physique III 5 (1995) 173; J. De Physique III 5 (1995) 41; Int. J. Solids Struct. 35 (1998) 889], an alternative approach was developed in which the driving force represents the dissipation increment due to PT only, i.e. total dissipation minus plastic dissipation. The aim of this paper is to prove the contradictory character of application of the Eshelby driving force to inelastic materials. For this purposes, a problem on the interface propagation in a rigid–plastic half-space under homogeneous normal and shear stresses is solved using both definitions, along with the principle of the maximum the driving force. Finite strain theory is used. It appears that the first approach exhibits some qualitative contradictions, which are not observed in our approach. In particular, even for shape memory alloys, when transformation strain can be accommodated elastically (or even without internal stresses), maximization of the Eshelby driving force requires as much plasticity as possible. When applied shear stress tends to the yield stress in shear of a new phase, the driving force tends to infinity, i.e. PT has to always occur at the beginning of plastic flow. Note that in this paper plasticity means dislocation plasticity rather than plasticity due to twinning. Twinning during martensitic PT is the appearance of several martensitic variants which are in twin relation to each other. Consequently, for twinned martensite one has microheterogeneous transformation strain without plastic dissipation term, i.e. both approaches coincide.  相似文献   

18.
We examine the effective medium properties of a dilute suspension of spheres in a second-order fluid under linear shear. Since the second-order fluid is the first step toward the general viscoelastic fluid, the results obtained may provide a qualitative feel for the problem in which the suspending fluid obeys a more complicated (and realistic) constitutive relation.The dissipation in the medium is calculated by determining the rate of working by surface forces; this is compared to the dissipation in a homogeneous fluid to give the effective properties. The results show that the term linear in volume fraction increases the corresponding rheological coefficient, just as in the Newtonian case. It is to be noted that the second-order dissipation is zero for simple shear and other weak flows, whereas for strong flows the small correction may increase or decrease the overall dissipation.  相似文献   

19.
Modeling of clearance joints plays an important role in the analysis and design of multibody mechanical systems. Based on the absolute nodal coordinate formulation (ANCF), a new computational methodology for modeling and analysis of planar flexible multibody systems with clearance and lubricated revolute joints is presented. A planar absolute nodal coordinate formulation based on the locking-free shear deformable beam element is implemented to discretize the flexible bodies. A continuous contact-impact model is used to evaluate the contact force, in which energy dissipation in the form of hysteresis damping is considered. A force transition model from hydrodynamic lubrication forces to dry contact forces is introduced to ensure continuity in the joint reaction force. A comprehensive study with different lubrication force models has also been carried out. The generalized-α method is used to solve the equations of motion and several efficient methods are incorporated in the proposed model. Finally, the methodology is validated by two numerical examples.  相似文献   

20.
基于标准k-ε湍流模型,首先利用湍流粘度方程和剪切应力在整个边界层内恒定的假设,推导出一类耗散率表达式,并根据常用的湍动能入口剖面方程以及平均风速剖面方程,计算获得相应的耗散率方程;然后在输运方程中添加自定义源项,通过已经确定的平均速度方程、湍动能方程、耗散率方程计算得到相应输运方程的自定义源项表达式,并进行空风洞数值模拟,从而得到了一类满足平衡大气边界层的来流边界条件.通过将这种边界条件与由湍流平衡条件得到的边界条件进行比较,表明本方法获得的边界条件更适用.并且,本方法无需考虑修正壁面函数和修正湍流模型常数,因而计算更为简单,可为平衡大气边界层的研究提供一种新的思路.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号