首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Membrane tension modulates cellular processes by initiating changes in the dynamics of its molecular constituents. To quantify the precise relationship between tension, structural properties of the membrane, and the dynamics of lipids and a lipophilic reporter dye, we performed atomistic molecular dynamics (MD) simulations of DiI-labeled dipalmitoylphosphatidylcholine (DPPC) lipid bilayers under physiological lateral tensions ranging from -2.6 mN m(-1) to 15.9 mN m(-1). Simulations showed that the bilayer thickness decreased linearly with tension consistent with volume-incompressibility, and this thinning was facilitated by a significant increase in acyl chain interdigitation at the bilayer midplane and spreading of the acyl chains. Tension caused a significant drop in the bilayer's peak electrostatic potential, which correlated with the strong reordering of water and lipid dipoles. For the low tension regime, the DPPC lateral diffusion coefficient increased with increasing tension in accordance with free-area theory. For larger tensions, free area theory broke down due to tension-induced changes in molecular shape and friction. Simulated DiI rotational and lateral diffusion coefficients were lower than those of DPPC but increased with tension in a manner similar to DPPC. Direct correlation of membrane order and viscosity near the DiI chromophore, which was just under the DPPC headgroup, indicated that measured DiI fluorescence lifetime, which is reported to decrease with decreasing lipid order, is likely to be a good reporter of tension-induced decreases in lipid headgroup viscosity. Together, these results offer new molecular-level insights into membrane tension-related mechanotransduction and into the utility of DiI in characterizing tension-induced changes in lipid packing.  相似文献   

2.
Biomembranes are complex systems that regulate numerous biological processes. Lipid phases that constitute these membranes influence their properties and transport characteristics. Here, we demonstrate the potential of short-range dynamics imaging (excited-state lifetime, rotational diffusion, and order parameter) as a sensitive probe of lipid phases in giant unilamellar vesicles (GUVs). Liquid-disordered and gel phases were labeled with Bodipy-PC at room temperature. Two-photon fluorescence lifetime imaging microscopy of single-phase GUVs reveals more heterogeneity in fluorescence lifetimes of Bodipy in the gel phase (DPPC: 3.8+/-0.6 ns) as compared with the fluid phase (DOPC: 5.2+/-0.2 ns). The phase-specificity of excited-state lifetime of Bodipy-PC is attributed to the stacking of ordered lipid molecules that possibly enhances homo-FRET. Fluorescence polarization anisotropy imaging also reveals distinctive molecular order that is phase specific. The results are compared with DiI-C12-labeled fluid GUVs to investigate the sensitivity of our fluorescence dynamics assay to different lipid-marker interactions. Our results provide a molecular perspective of lipid phase dynamics and the nature of their microenvironments that will ultimately help our understanding of the structure-function relationship of biomembranes in vivo. Furthermore, these ultrafast excited-state dynamics will be used for molecular dynamics simulation of lipid-lipid, lipid-marker and lipid-protein interactions.  相似文献   

3.
DPPC incorporation into egg-PC unilamellar vesicles reduces their oxidation rate beyond that expected from the unsaturated lipid dilution. Addition of the unsaturated lipids produces changes in the physical properties of the inner parts of the lipid bilayer, as sensed by fluorescence anisotropy of DPH, and in the hydrophilic/hydrophobic region, as sensed by the generalized polarization of laurdan. DPPC (30 mol%) incorporation into egg-PC vesicles produces a decrease in alkyl chain mobility in the inner part of the bilayer, evaluated by the increase of DPH fluorescence anisotropy, and a rise of the generalized polarization value of laurdan in the bilayer interface. It also leads to a decrease in the rate of water efflux promoted by a hypertonic shock. Oxidation of PC LUVs, promoted by AAPH, as sensed by oxygen uptake and MDA formation, leads to qualitatively similar results than DPPC addition: rigidification at the inner part and the surface of the liposomes, and a lower rate of water permeation. It is suggested that these changes could contribute to the observed decrease in oxidation rate with conversion.  相似文献   

4.
The study of asymmetric lipid bilayers is of a crucial importance due to the great number of biological process in which they are involved such as exocytosis, intracellular fusion processes, phospholipid-protein interactions, and signal transduction pathway. In addition, the loss of this asymmetry is a hallmark of the early stages of apoptosis. In this regard, a model of an asymmetric lipid bilayer composed of DPPC and DPPS was simulated by molecular dynamics simulation. Thus, the asymmetric membrane was modeled by 264 lipids, of which 48 corresponded to DPPS- randomly distributed in the same leaflet with 96 DPPC. In the other leaflet, 120 DPPC were placed without DPPS-. Due to the presence of a net charge of -1 for the DPPS- in physiological conditions, 48 Na+ were introduced into the system to balance the charge. To ascertain whether the presence of the DPPS- in only one of the two leaflets perturbs the properties of the DPPC in the other leaflet composed only of DPPC, different properties were studied, such as the atomic density of the different components across the membrane, the electrostatic potential across the membrane, the translational diffusion of DPPC and DPPS, the deuterium order parameters, lipid hydration, and lipid-lipid charge bridges. Thus, we obtained that certain properties such as the surface area lipid molecule, lipid head orientation, order parameter, translational diffusion coefficient, or lipid hydration of DPPC in the leaflet without DPPS remain unperturbed by the presence of DPPS in the other leaflet, compared with a DPPC bilayer. On the other hand, in the leaflet containing DPPS, some of the DPPC properties were strongly affected by the presence of DPPS such as the order parameter or electrostatic potential.  相似文献   

5.
Understanding the lipid phase transition of lipid bilayers is of great interest from biophysical, physicochemical, and technological points of view. With the aim of elucidating the structural changes that take place in a DPPC phospholipid bilayer induced by an external isotropic surface pressure, five computer simulations were carried out in a range from 0.1 to 40 mN/m. Molecular dynamics simulations provided insight into the structural changes that took place in the lipid structure. It was seen that low pressures ranging from 0.1 to 1 mN/m had hardly any effect on the structure, electrical properties, or hydration of the lipid bilayer. However, for pressures above 40 mN/m, there was a sharp change in the lipid-lipid interactions, hydrocarbon lipid fluidity, and electrostatic potential, corresponding to the mesomorphic transition from a liquid crystalline state (L(alpha)) to its gel state (P'(beta)). The head lipid orientation remained almost unaltered, parallel to the lipid layer, as the surface pressure was increased, although a noticeable change in its angular distribution function was evident with the phase transition.  相似文献   

6.
Temperature measurements have been made within magnetite (Fe(3)O(4)) nanoparticle-liposome dispersions subjected to electromagnetic field at radiofrequency (RF) heating based on the fluorescence anisotropy of diphenylhexatriene (DPH) embedded within the bilayer. Incorporating cholesterol within dipalmitoylphosphatidylcholine (DPPC) bilayers broadened the anisotropy window associated with lipid melting. Cryogenic transmission electron microscopy showed that the dispersions contained magnetoliposomes with nanoparticle aggregates at both low and high encapsulation densities. RF heating results demonstrated the ability to measure the temperature of the ML bilayer with on/off RF cycles using DPH anisotropy. These measurements reflected the temperature of the bulk aqueous phase, which is consistent with previous work showing rapid heat dissipation from a nanoparticle surface during RF heating and a negligible difference between surface and bulk temperature.  相似文献   

7.
This paper describes the formation and characterization of liposome entrapping the silver nanoparticles in bilayer. Silver nanoparticles were entrapped in the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposome, named as silver-loaded liposome. Specifically, above the gel to liquid-crystalline phase transition temperature of this lipid (i.e., 41 degrees C), it was observed that membrane fluidities of silver-loaded liposomes were increased, and fluorescence anisotropy values were reduced from 0.114 to 0.097. This might be due to the structural modifications and interactions between DPPC molecules and silver nanoparticles within the bilayer. It was also confirmed that silver nanoparticles were entrapped in hydrophobic region of lipid bilayer with transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) measurements.  相似文献   

8.
We investigated the effect of fatty acids such as stearic acid (SA, 18:0), oleic acid (OA, 18:1), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) on a dipalmitoylphosphatidylcholine (DPPC) bilayer by determining the phase transition temperature, fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), and detergent insolubility. Treatment with unsaturated fatty acid broadened and shifted the phase transitions of the DPPC bilayer to a lower temperature. The phase transition temperature and the value of fluorescence anisotropy of DPH at 37 degrees C decreased progressively with increasing treatment amounts of unsaturated fatty acid. A large amount of the DPPC bilayer treated with unsaturated fatty acid was dissolved in Triton X-100, obtaining a low level of detergent insolubility. These modifications of the bilayer physical properties were most pronounced with DHA and EPA treatment. These data show that unsaturated fatty acids, particularly DHA and EPA, induce a marked change in the lipid bilayer structure. The composition of fatty acids in the DPPC bilayer was similar after treatment with various unsaturated fatty acids, suggesting that the different actions of unsaturated fatty acids are attributed to change in the molecular structure (e.g., kinked conformation by double bonds). We further explored the change in physical properties induced by fatty acids dispersed in a water-in-oil-in-water multiple emulsion and found that unsaturated fatty acids acted efficiently on the DPPC bilayer, even when incorporated in emulsion form.  相似文献   

9.
Solvation dynamics of 4-(dicyanomethylene)-2-methyl-6(p-dimethylaminostyryl) 4H-pyran (DCM) has been studied in a dipalmitoyl-phosphatidylcholine (DPPC) vesicle entrapped in a sodium silicate derived sol-gel glass. Solvation dynamics in DPPC in a sol-gel glass is described by two components of 350 +/- 50 ps (50%) and 2300 +/- 200 ps (50%) with a total dynamic Stokes shift of 1300 cm(-1). The fast component (350 ps) is similar to the fast component in a DPPC vesicle in bulk water (320 +/- 50 ps). This component may be ascribed to the dynamics of the water molecules inside the water pool of the vesicle. However, the slow component (2300 +/- 200 ps) is about 2.5 times slower compared to the slow component of solvation dynamics of DCM in a DPPC vesicle in bulk solvent (900 +/- 100 ps). The anisotropy decay of DCM in a DPPC vesicle both in sol-gel glass and in bulk water exhibits a very fast initial decay with a large residual anisotropy, which does not decay in approximately 10 ns. The time scale of anisotropy decay is very different from that of solvation dynamics.  相似文献   

10.
We report on the rotational diffusion dynamics of the chromophore 7-nitrobenz-2-oxa-1,3-diazole (NBD) in a series of protic and polar aprotic solvents, as a function of the identity of the side group appended to the chromophore amine functionality. The central issue we address is whether or not the side groups play a role in mediating the anisotropic reorientation dynamics of the chromophore. To understand the motional properties of the chromophores in detail, we use both one-photon and two-photon excited fluorescence anisotropy decay measurements, and from these complementary excitation methods, we extract two of the Cartesian components of the rotational diffusion constant, D. The experimental data indicate that, regardless of the functionality of the pendant side group, the reorienting moieties exhibit ratios of Dz/Dx in the range 1.8-2.0. There is a small but discernible difference between the substituted chromophores. For all of the substituted NBD chromophores, dielectric friction plays a discernible role in determining their reorientation dynamics.  相似文献   

11.
The effect of physiological concentrations of different chlorides on the structure of a dipalmitoyl phosphatidylcholine (DPPC) bilayer has been investigated through atomistic molecular dynamics simulations. These calculations provide support to the concept that Li+, Na+, Ca2+, Mg2+, Sr2+, Ba2+, and Ac3+, but not K+, bind to the lipid-head oxygens. Ion binding exhibits an influence on lipid order, area per lipid, orientation of the lipid head dipole, the charge distribution in the system, and therefore the electrostatic potential across the head-group region of the bilayer. These structural effects are sensitive to the specific characteristics of each cation, i.e., radius, charge, and coordination properties. These results provide evidence aimed at shedding some light into the apparent contradictions among different studies reported recently regarding the ordering effect of ions on zwitterionic phosphatidylcholine lipid bilayers.  相似文献   

12.
We report on the fluorescence lifetime and anisotropy decay dynamics of the tethered chromophore NBD in unilamellar vesicles comprised of phosphoglycerol and phosphocholine lipids with C(12) and C(18) saturated acyl chains, with or without cholesterol and/or sphingomyelin. For the phosphocholine vesicles, we use the chromophore 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-phosphocholine (NBD-PC), and for the phosphoglycerol vesicles, we use the chromophore 2-(12-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)dodecanoyl-1-hexadecanoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (NBD-PG). The addition of cholesterol and/or sphingomyelin to the PC vesicles restricts the chromophore environment, in agreement with the known rigidizing effect of cholesterol on PC membranes. The PG systems do not exhibit an analogous effect with the addition of cholesterol and/or sphingomyelin. The motional freedom of the NBD chromophore is, in general, more restricted in the PC bilayers than it is in the PG bilayers, and we understand this behavior in the context of the role of the lipid headgroups in mediating bilayer organization.  相似文献   

13.
We report on the physical and optical characterization of liposomes formed by extrusion and sonication, two widely used methods for vesicle preparation. We also address the issue of whether the properties of bilayers formed from liposomes prepared by the two techniques differ at the molecular and mesoscopic levels. We used the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), with and without cholesterol, to form liposomes, incorporating 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (18:1-12:0 NBD-PC) as an optical probe of dynamics. We measured the physical morphology of liposomes by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the rotational and translational diffusion of 18:1-12:0 NBD-PC by time correlated single photon counting (TCSPC) and fluorescence recovery after pattern photobleaching (FRAPP), respectively. We find that, despite apparent differences in average size and size distribution, both methods of preparation produced liposomes that exhibit the same molecular scale environment. The translational diffusion behavior of the tethered chromophore in planar bilayer lipid membranes formed from the two types of liposomes also yielded similar results.  相似文献   

14.
Dipalmitoylphosphatidylcholine (DPPC) bilayer was created on the surface of an exponentially growing poly(glutamic acid)/poly(lysine) (PGA/PLL) layer-by-layer polyelectrolyte film. The lipid bilayer decreased the surface roughness of the polyelectrolyte film. The layer-by-layer construction of the polyelectrolyte film could be continued on the top of the DPPC layer. The lipid bilayer, however, formed a barrier in the interior of the polyelectrolyte film, which blocked the diffusion (a prerequisite for exponential growth) of the polyelectrolytes. Thus, a new growth regime started in the upper part of the polyelectrolyte film, which was added to embed the DPPC bilayer. The structure and the dynamics of the DPPC bilayer on the polyelectrolyte film surface remained similar to that of its hydrated multibilayers, except that the phase transition became wider. In the case of embedded DPPC bilayers, in addition, the phase-transition temperature also decreased. This is the result of interactions with the nonconcerted movements of the barrier-separated lower and higher parts of the polyelectrolyte film. Gramicidin A (GRA) as a model of lipid-soluble peptides and proteins was successfully incorporated into such DPPC films. The DPPC films, either with or without GRA, were remarkably stable; as many heating-cooling cycles to measure phase transition could be carried out without visible alterations as wanted.  相似文献   

15.
We inertially inject and study the contents of optically trappable aqueous nanodroplets (hydrosomes) emulsified in a perfluorinated matrix. A new piezoelectric actuated device for production of single hydrosomes on demand is introduced. Hydrosomes containing enhanced green fluorescent protein (EGFP) were injected, optically trapped, and held at the focus of an excitation laser in a confocal microscope, and single-molecule photobleaching events were observed. The rotational diffusion time of EGFP in trapped hydrosomes was measured using time-resolved fluorescence anisotropy. In free solution, the mean rotational diffusion time was determined to be 13.8 +/- 0.1 ns at 3 microM and 14.0 +/- 0.2 ns at 10 microM. In hydrosomes, the mean rotational diffusion time was similar and determined to be 12.6 +/- 1.0 ns at 3 microM and 15.5 +/- 1.6 ns at 10 microM. We conclude that the rotational motion inside the nanodroplets is consistent with rotation in free solution and that the protein therefore does not aggregate at the water-oil interface. Protein can be confined in hydrosomes with high efficiency using this technique, which provides an alternative to surface attachment or lipid encapsulation and opens up new avenues of research using single molecules contained in fluid nanovolumes.  相似文献   

16.
In this communication, we demonstrate the first use of sum-frequency generation (SFG) vibrational spectroscopy to measure directly the phase transition temperature (Tm) of a single planar supported lipid bilayer (PSLB). Three saturated phospholipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-diheptadecanoyl-sn-glycero-3-phosphocholine (DHPC), and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), were studied. Lipid bilayer films were prepared by the the Langmuir-Blodgett method at a surface pressure of 30 nN/m. The symmetric nature of the bilayer was used to determine the Tm of bilayers by measuring the intensity of the symmetric methyl stretch at 2875 cm-1 from the lipid fatty acid chains as a function of temperature. A maximum in the CH3 symmetric stretch transition was observed at the Tm of the lipid film due to the reduction of symmetry in the bilayer. The SFG measured Tm for DPPC, DHPC, and DSPC were 41.0 +/- 0.4, 52.4 +/- 0.7, and 57.9 +/- 0.5 degrees C, respectively. These values correlate well with the literature values of 41.3 +/- 1.8, 49 +/- 3, and 54.5 +/- 1.5 degrees C for DPPC, DHPC, and DSPC, respectively obtained by differential scanning calorimetry (DSC) of lipid vesicles in solution. The high degree of correlation between the SFG spectroscopic measurements and the DSC results suggests the Tm of these lipids is not significantly altered upon immobilization on a surface.  相似文献   

17.
We report here on the motional and fluorescence lifetime dynamics of the chromophore NBDHA (6-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)hexanoic acid) in neat solvents and in aqueous solutions containing unilamellar vesicles of varying composition. We measure the transient response of this chromophore by time-correlated single-photon counting, using one- and two-photon excitation to resolve the Cartesian components of the rotational diffusion constant, D. Our experimental data for NBDHA in selected solvents of varying viscosity demonstrate that one- and two-photon excitation probe different components of the rotational diffusion constant and that this chromophore reorients as a prolate rotor with an aspect ratio of approximately 2. For NBDHA in aqueous solutions containing unilamellar vesicles of varying composition, we recover the same reorientation behavior regardless of vesicle composition. Fluorescence lifetime and steady-state fluorescence data show the chromophore to reside in a polar environment that is different from neat water. We understand these data in the context of the chromophore residing in close proximity to the unilamellar vesicle polar headgroups in all cases.  相似文献   

18.
Gold nanoparticles were loaded in the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Above the gel to liquid-crystalline phase transition temperature, membrane fluidities of DPPC liposomes were changed by loading the gold nanoparticles. Compared with liposomes without loading the gold nanoparticles, gold-loaded liposomes showed the lower fluorescence anisotropy values. That is, the membrane fluidities of DPPC bilayer were increased by loading the gold nanoparticles. The membrane fluidities were increased as the amount of gold nanoparticles increased. The existence of gold nanoparticles in the DPPC bilayer was observed by transmission electron microscopy. Through the energy dispersive X-ray spectrometer, the particles in DPPC bilayer were confirmed to be gold nanoparticles.  相似文献   

19.
The applicability of 1-(4-N,N-dimethylaminophenylethynyl)pyrene (DMAPEPy), a pyrene derivative showing intramolecular charge transfer, as a prospective probe for lipid bilayer membranes has been evaluated. High sensitivity of DMAPEPy to solvent polarity and viscosity makes it to act both as a polarity-sensitive probe and as a fluorescence anisotropy probe. The molecule shows high partition efficiency towards bilayer membranes in both solid gel as well as in the liquid crystalline phases. The emission spectrum, quenching experiment and lifetime data suggest bimodal distribution of DMAPEPy in the bilayer. Using the solvent polarity scales the polarity parameters of the two locations in lipid bilayer have been estimated. In the bilayer environment it exhibits remarkable spectral changes with temperature. The thermotropic phase change of the bilayer is sensitively monitored by fluorescence intensity as well as fluorescence anisotropy parameters. DMAPEPy is also capable of sensing the changes induced by membrane modifiers like cholesterol.  相似文献   

20.
《Chemical physics letters》1987,136(5):407-412
Existing derivations of the time-dependent fluorescence anisotropy of an asymmetric molecule constitute a straightforward application of Favro's work on the rotational diffusion equation (RDE), and make no contribution to the elucidation of rotational dynamics as such. A new approach is developed, and the problem formulated in the parlance of conventional reaction kinetics by demonstrating, with the aid of the method of moments, that the RDE is completely equivalent to a set of ordinary linear differential equations, formally identical with those used to describe a first-order series-parallel reaction scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号