首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structures and properties of PtRu electrocatalyts, derived from the aligned RuO2 nanorods (RuO2NR), are investigated using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and cyclic voltammetry toward COads and methanol oxidation. The catalytic activity of methanol oxidation and the CO tolerance are promoted significantly by reducing RuO2 into Ru metal before decorating with Pt. Reduction of RuO2NR was carried out by either thermal decomposition at 650 degrees C in vacuum or H2-reduction at 130 degrees C in low-pressure hydrogen. Reduction assisted by hydrogen allows infiltrating decomposition at low temperature and produces an array of nanorods with rugged walls featuring small Ru nuclei and larger surface area. Pt-RuNR, whose surface Pt:Ru ratio=0.58:0.42 was prepared by decorating with 0.1 mg cm(-2) Pt on the H2-reduced array containing 0.39 mg cm(-2) Ru, demonstrates a favorable combination of CO tolerance and high methanol oxidation activity superior to other RuO2NR-derived catalysts. When compared with a commercial electrocatalyst of PtRu (1:1) alloy (<4 nm), the activity of Pt-RuNR in methanol oxidation is shown to be somewhat lower at potential<0.48 V and higher at potential>or=0.48 V.  相似文献   

2.
The effects of RuO(x) structure on the selective oxidation of methanol to methyl formate (MF) at low temperatures were examined on ZrO(2)-supported RuO(x) catalysts with a range of Ru surface densities (0.2-3.8 Ru/nm(2)). Their structure was characterized using complementary methods (X-ray diffraction, Raman and X-ray photoelectron spectra, and reduction dynamics). The structure and reactivity of RuO(x) species change markedly with Ru surface density. RuO(x) existed preferentially as RuO(4)(2-) species below 0.4 Ru/nm(2), probably as isolated Zr(RuO(4))(2) interacting with ZrO(2) surfaces. At higher surface densities, highly dispersed RuO(2) domains coexisted with RuO(4)(2-) and ultimately formed small clusters and became the prevalent form of RuO(x) above 1.9 Ru/nm(2). CH(3)OH oxidation rates per Ru atom and per exposed Ru atom (turnover rates) decreased with increasing Ru surface density. This behavior reflects a decrease in intrinsic reactivity as RuO(x) evolved from RuO(4)(2-) to RuO(2), a conclusion confirmed by transient anaerobic reactions of CH(3)OH and by an excellent correlation between reaction rates and the number of RuO(4)(2-) species in RuO(x)/ZrO(2) catalysts. The high intrinsic reactivity of RuO(4)(2-) structures reflects their higher reducibility, which favors the reduction process required for the kinetically relevant C-H bond activation step in redox cycles using lattice oxygen atoms involved in CH(3)OH oxidation catalysis. These more reactive RuO(4)(2-) species and the more exposed ZrO(2) surfaces on samples with low Ru surface density led to high MF selectivities (e.g. approximately 96% at 0.2 Ru/nm(2)). These findings provide guidance for the design of more effective catalysts for the oxidation of alkanes, alkenes, and alcohols by the synthesis of denser Zr(RuO(4))(2) monolayers on ZrO(2) and other high surface area supports.  相似文献   

3.
Diels-Alder adducts of 1,2-dihydropyridine with maleic and acrylic acid derivatives were stereospecifically converted by way of RuO4 oxidation into new 4-amino-1,2,3-cyclohexanetricarboxylic acids and 4-amino-1,3-cyclohexanedicarboxylic acids.  相似文献   

4.
A peptidomimetic of the turn in the helix-turn-helix (HTH) motif of DNA-binding proteins was designed and synthesized. Conformational constraint was achieved by an unusual linking of two amino acids with a side chain carbon-carbon bond. A phenyl ring provides the potential for new hydrophobic contacts with the hydrophobic core of the HTH motif. In the mimic, the peptide backbone and the central residue were retained in native form within a 12-membered cyclic tripeptide. The target compound 1b was synthesized by two sequential Horner-Wittig couplings followed by enantioselective hydrogenation with Rh(MeDuPHOS) in eight steps and 35% overall yield. The stereochemical outcome of the key hydrogenation was determined by aromatic ring oxidation with RuO(2)/NaIO(4) to give 2 equiv of Boc-Asp-OMe.  相似文献   

5.
The oxidation of C-H and C-C bonds by metal-oxo compounds is of general interest. We studied the RuO4-mediated catalytic oxidation of several cycloalkanes such as adamantane and cis- and trans-decalin as well as methane. B3LYP/6-31G(d) calculations on the experimentally proposed (3+2) mechanism are in good agreement with known experimental results. Comparison of experimental and theoretical kinetic isotope effects confirms the proposed mechanism. Besides RuO4, we also looked at RuO4(OH)- as a potential active species to account for ruthenium tetraoxide oxidations under strong basic conditions.  相似文献   

6.
Synthesis of (1R,2S,5S,6R,8S)-3-azabicyclo[3.3.0]octane-2,6,8-tricarboxylic acid (2) from trans-4-hydroxy-L-proline (5) was attempted. A Diels-Alder reaction of 3,4-dehydroproline derivative 9 and cyclopentadiene afforded a single stereoisomer 11. The Diels-Alder adduct was smoothly converted to the hydrochloride of 2 (24) via RuO(4) oxidation. Although some racemization of the material or product was observed during the synthetic processes, the amino acid 24 proved to be optically pure.  相似文献   

7.
制备了一种新的甲醇直接燃料电池Pt/RuO2/CNTs阳极催化剂,在相同Pt负载量下,其甲醇电催化氧化活性是Pt/CNTs的3倍.采用循环伏安法研究发现Pt/RuO2/CNTs纳米催化剂中RuO2含量对甲醇电催化氧化活性有明显影响,当Pt和RuO2在碳纳米管上含量分别为15%和9.5%时,Pt/RuO2/CNTs催化剂具有最佳的甲醇电催化氧化活性.RuO2负载在碳纳米管上比电容的变化,反映了水合RuO2结构中质子与电子传输平衡的能力,分析表明,催化剂中RuO2含量不同导致电容的变化是影响甲醇电催化氧化活性的主要原因.当催化剂结构中质子与电子传输达到平衡时,催化剂比电容最大,电催化氧化活性最高.这种基于电容关联电催化剂的观点对甲醇直接燃料电池阳极催化剂的设计非常有意义.  相似文献   

8.
Electrooxidation of methanol on Ru surfaces was investigated using in situ surface-enhanced Raman spectroscopy. Although the cyclic voltammogram did not show a significant methanol oxidation current on Ru, a Raman band at approximately 1970-1992 cm(-1) was observed from 0.4 to 0.8 V in 0.1 M HClO(4) + 1 M methanol. By comparing with the C-O stretching band (nu(CO)) of carbon monoxide (CO) adsorbed on RuO(2)(110) in the ultrahigh vacuum and on oxidized Ru electrodes, the observed spectral feature is assigned to nu(CO) of adsorbed CO (CO(ads)) on RuO(2). The formation of CO(ads) suggests that methanol oxidation does occur on Ru at room temperature, which is in contrast to the perception that Ru is not active for the reaction. The lack of significant methanol oxidation current is attributed to the competing rapid surface oxidation, which forms inactive surface oxides and therefore inhibits the methanol oxidation.  相似文献   

9.
Electrocyclic reaction product of 1-(methoxycarbonyl)-1,2-dihydropyridine was stereospecifically converted by RuO(4) oxidation into azetidine-cis-2,3-dicarboxylic acid.  相似文献   

10.
Lai S  Lepage CJ  Lee DG 《Inorganic chemistry》2002,41(7):1954-1957
The oxidation of methoxy substituted benzyl phenyl sulfides can be used to distinguish between oxidants that react by single electron transfer (followed by oxygen rebound) and those which react by direct oxygen atom transfer in a two-electron process. Transfer of a single electron results in the formation of an intermediate radical cation, which can undergo C-S bond cleavage and deprotonation reactions leading to the formation of methoxy substituted benzyl derivatives, methoxy substituted benzaldehydes, and diphenyl disulfide. The oxidation of 4-methoxybenzyl phenyl sulfide and 3,4,5-trimethoxybenzyl phenyl sulfide by oxidants known to participate in single electron transfers (Ce(4+), Mn(3+), and Cr(6+)) results in the formation of the corresponding benzaldehydes, benzyl alcohols, benzyl acetates, and benzyl nitrates in variable yields. However, the only products obtained from the oxidation of the same compounds with RuO(4), RuO(4-), and RuO(4)(2-) are sulfoxides and sulfones. Therefore, it is concluded that the oxidation of sulfides by oxoruthenium compounds likely proceeds by a concerted mechanism.  相似文献   

11.
[reaction: see text] The catalytic dihydroxylation of olefins represents a unique synthetic tool for the generation of two C,O-bonds with defined relative configuration. Whereas OsO(4) has been established as a very general dihydroxylation catalyst within the past 30 years, the less expensive and toxic isoelectronic RuO(4) has found only limited use for this type of oxygen-transfer reaction. High catalyst loading and undesired side reactions were severe drawbacks in RuO(4)-catalyzed oxidations of C,C-double bonds. Recently, we were able to improve the RuO(4)-catalyzed dihydroxylation by addition of Bronsted acids to the reaction mixture. This protocol proved to be of general applicability, however, certain limitations were observed. To address these problematic functional groups a new Lewis acid accelerated oxidation was developed. The use of only 10 mol % of CeCl(3) allowed a further decrease in the catalyst concentration down to 0.25 mol % while broadening the scope of the reaction. Silyl ethers and nitrogen containing functional groups are now tolerated in this optimized protocol. Furthermore, competing scission reactions are supressed in the presence of Lewis acid allowing longer reaction times and the successful oxidation of electron-deficient tetrasubstituted double bonds that cannot be oxidized using known dihydroxylation protocols.  相似文献   

12.
采用浸渍法制备了RuO2/γ-Al2O3和RuO2-CeO2/γ-Al2O3催化剂,利用XRD,XPS和ESR分析了催化剂的结构,并研究了湿式氧化降解苯酚的活性.结果表明,两种催化剂表面RuO2均有良好的分散性,并且催化剂表面存在氧空位和化学吸附氧,CeO2的掺杂使催化剂表面氧空位和化学吸附氧数量增加.两种催化剂对湿式氧化降解苯酚具有良好的催化活性,当苯酚质量浓度为4200mg/L,在150℃和3MPa下,RuO2/γ-Al2O3催化剂湿式氧化降解苯酚反应150min后,苯酚全部被去除,RuO2-CeO2/γ-Al2O3催化剂反应60min后,苯酚的去除率为96%.  相似文献   

13.
A novel and efficient approach for the synthesis of phosphine-containing α-amino acids bearing quaternary carbon is described. The key step involves the original nucleophilic addition of lithiated phosphines onto acyclic ene-carbamates concomitant with a spontaneous internal (N→C) alkyloxycarbonyl migration.  相似文献   

14.
15.
The polyhydroxylated beta-amino acids (2S,3R,4S,5S,7E)-3-amino-8-phenyl-2,4,5-trihydroxyoct-7-enoic acid (APTO) and (2S,3R,4S,5S,7E,9E)-3-amino-10-(4-ethoxyphenyl)-2,4,5-trihydroxydeca-7,9-dienoic acid (AETD) are key components of the microsclerodermin family of anti-fungal cyclic peptides. They have been synthesised in protected form in twelve steps using a unified strategy, with the introduction of the unsaturated sidechain in the final step of the synthesis from a common aldehyde intermediate. The synthesis features the ordered application of asymmetric aminohydroxylation and dihydroxylation reactions to efficiently introduce the stereochemistry of the targets with high selectivity.  相似文献   

16.
The thermochemistry of the RuO(4)(2-)+MnO(4)(-)-->RuO(4)(-)+MnO(4)(2-) redox reaction in aqueous solution is studied by separate density-functional-based ab initio molecular-dynamics simulations of the component half reactions RuO(4)(2-)-->RuO(4)(-)+e(-) and MnO(4)(2-)-->MnO(4)(-)+e(-). We compare the results of a recently developed grand-canonical method for the computation of oxidation free energies to the predictions by the energy-gap relations of the Marcus theory that can be assumed to apply to these reactions. The calculated redox potentials are in good agreement. The subtraction of the half-reaction free energies gives an estimate of the free energy of the full reaction. The result obtained from the grand-canonical method is -0.4 eV, while the application of the Marcus theory gives -0.3 eV. These should be compared to the experimental value of 0.0 eV. Size effects, in response to increasing the number of water molecules in the periodic model system from 30 to 48, are found to be small ( approximately 0.1 eV). The link to the Marcus theory also has enabled us to compute reorganization free energies for oxidation. For both the MnO(4)(2-) and RuO(4)(2-) redox reactions we find the same reorganization free energy of 0.8 eV (1.0 eV in the larger system). The results for the free energies and further analysis of solvation and electronic structure confirm that these two tetrahedral oxoanions show very similar behavior in solution in spite of the central transition-metal atoms occupying a different row and column in the periodic table.  相似文献   

17.
Efforts to synthesize 4-trifluoromethyl- and 4-difluoromethyl-l-pyroglutamic acids are described. After many arduous efforts, we successfully synthesized our target molecules cis-4-trifluoromethyl-l-pyroglutamic acid 25 and cis-4-difluoromethyl-l-pyroglutamic acid 26 from trans-4-hydroxy-l-proline through oxidation of fluorinated prolinates with RuO(4).  相似文献   

18.
[reaction: see text] As the unusual amino acid norlanthionine (nor-Lan) has previously been incorporated into cyclic peptide analogues of the ring C of lantibiotic nisin, we report here the stereoselective synthesis of the new (S,R)- and (R,R)-alpha-methylnorlanthionines (alpha-Me-nor-Lan). The orthogonally protected derivatives of these compounds have also been prepared. The key step in the synthesis of these bisamino acids was the S(N)2 opening reaction of the corresponding cyclic sulfamidates with the SH group of appropriately protected l-cysteine derivatives.  相似文献   

19.
RuO2 domains supported on SnO2, ZrO2, TiO2, Al2O3, and SiO2 catalyze the oxidative conversion of methanol to formaldehyde, methylformate, and dimethoxymethane with unprecedented rates and high combined selectivity (>99%) and yield at low temperatures (300-400 K). Supports influence turnover rates and the ability of RuO2 domains to undergo redox cycles required for oxidation turnovers. Oxidative dehydrogenation turnover rates and rates of stoichiometric reduction of RuO2 in H2 increased in parallel when RuO2 domains were dispersed on more reducible supports. These support effects, the kinetic effects of CH3OH and O2 on reaction rates, and the observed kinetic isotope effects with CH3OD and CD3OD reactants are consistent with a sequence of elementary steps involving kinetically relevant H-abstraction from adsorbed methoxide species using lattice oxygen atoms and with methoxide formation in quasi-equilibrated CH3OH dissociation on nearly stoichiometric RuO2 surfaces. Anaerobic transient experiments confirmed that CH3OH oxidation to HCHO requires lattice oxygen atoms and that selectivities are not influenced by the presence of O2. Residence time effects on selectivity indicate that secondary HCHO-CH3OH acetalization reactions lead to hemiacetal or methoxymethanol intermediates that convert to dimethoxymethane in reactions with CH3OH on support acid sites or dehydrogenate to form methylformate on RuO2 and support redox sites. These conclusions are consistent with the tendency of Al2O3 and SiO2 supports to favor dimethoxymethane formation, while SnO2, ZrO2, and TiO2 preferentially form methylformate. These support effects on secondary reactions were confirmed by measured CH3OH oxidation rates and selectivities on physical mixtures of supported RuO2 catalysts and pure supports. Ethanol also reacts on supported RuO2 domains to form predominately acetaldehyde and diethoxyethane at 300-400 K. The bifunctional nature of these reaction pathways and the remarkable ability of RuO2-based catalysts to oxidize CH3OH to HCHO at unprecedented low temperatures introduce significant opportunities for new routes to complex oxygenates, including some containing C-C bonds, using methanol or ethanol as intermediates derived from natural gas or biomass.  相似文献   

20.
The development of green, selective, and efficient catalysts, which can aerobically oxidize a variety of alcohols to their corresponding aldehydes and ketones, is of both economic and environmental significance. We report here the synthesis of a novel aerobic oxidation catalyst, a zeolite-confined nanometer-sized RuO(2) (RuO(2)-FAU), by a one-step hydrothermal method. Using the spatial constraints of the rigid zeolitic framework, we sucessfully incorporated RuO(2) nanoparticles (1.3 +/- 0.2 nm) into the supercages of faujasite zeolite. Ru K-edge X-ray absorption fine structure results indicate that the RuO(2) nanoclusters anchored in the zeolite are structurally similar to highly hydrous RuO(2); that is, there is a two-dimensional structure of independent chains, in which RuO(6) octahedra are connected together by two shared oxygen atoms. In our preliminary catalytic studies, we find that the RuO(2) nanoclusters exhibit extraordinarily high activity and selectivity in the aerobic oxidation of alcohols under mild conditions, for example, air and ambient pressure. The physically trapped RuO(2) nanoclusters cannot diffuse out of the relatively narrow channels/pores of the zeolite during the catalytic process, making the catalyst both stable and reusable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号