首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The key to understand a protein's function often lies in its conformational dynamics. We develop a coarse-grained variational model to investigate the interplay between structural transitions, conformational flexibility, and function of the N-terminal calmodulin domain (nCaM). In this model, two energy basins corresponding to the "closed" apo conformation and "open" holo conformation of nCaM are coupled by a uniform interpolation parameter. The resulting detailed transition route from our model is largely consistent with the recently proposed EFbeta-scaffold mechanism in EF-hand family proteins. We find that the N-terminal parts of the calcium binding loops shows higher flexibility than the C-terminal parts which form this EFbeta-scaffold structure. The structural transition of binding loops I and II are compared in detail. Our model predicts that binding loop II, with higher flexibility and earlier structural change than binding loop I, dominates the open/closed conformational transition in nCaM.  相似文献   

3.
Rational drug design depends on the knowledge of the three-dimensional (3D) structure of complexes between proteins and lead compounds of low molecular weight. A novel nuclear magnetic resonance (NMR) spectroscopy strategy based on the paramagnetic effects from lanthanide ions allows the rapid determination of the 3D structure of a small ligand molecule bound to its protein target in solution and, simultaneously, its location and orientation with respect to the protein. The method relies on the presence of a lanthanide ion in the protein target and on fast exchange between bound and free ligand. The binding affinity of the ligand and the paramagnetic effects experienced in the bound state are derived from concentration-dependent (1)H and (13)C spectra of the ligand at natural isotopic abundance. Combined with prior knowledge of the crystal or solution structure of the protein and of the magnetic susceptibility tensor of the lanthanide ion, the paramagnetic data define the location and orientation of the bound ligand molecule with respect to the protein from simple 1D NMR spectra. The method was verified with the ternary 30 kDa complex between the lanthanide-labeled N-terminal domain of the epsilon exonuclease subunit from the Escherichia coli DNA polymerase III, the subunit theta, and thymidine. The binding mode of thymidine was found to be very similar to that of thymidine monophosphate present in the crystal structure.  相似文献   

4.
Ca2+ binding is essential for the biological functions of calmodulin (CaM) as a trigger/sensor protein to regulate many biological processes in the Ca2+ -signaling cascade. A challenge in understanding the mechanism of Ca2+ signaling is to obtain site-specific information about the Ca2+ binding properties of individual Ca2+ -binding sites of EF-hand proteins, especially for CaM. In this paper, we report the first estimation of the intrinsic Ca2+ affinities of the four EF-hand loops of calmoduin (I-IV) by individually grafting into the domain 1 of CD2. Taking advantage of the Trp residues in the host protein, we first determined metal-binding affinities for Tb3+, Ca2+, and La3+ for all four grafted EF-loops using Tb3+ aromatic resonance energy transfer. EF-loop I exhibits the strongest binding affinity for Ca2+, La3+, and Tb3+, while EF-loop IV has the weakest metal-binding affinity. EF-loops I-IV of CaM have dissociation constants for Ca2+ of 34, 245, 185, and 814 microM, respectively, with the order I > III approximately equal to II > IV. These findings support a charge-ligand-balanced model in which both the number of negatively charged ligand residues and the balanced electrostatic dentate-dentate repulsion by the adjacent charged residues are two major determinants for the relative Ca2+ -binding affinities of EF-loops in CaM. Our grafting method provides a new strategy to obtain site-specific Ca2+ binding properties and a better estimation of the cooperativity and conformational change contributions of coupled EF-hand proteins.  相似文献   

5.
The proteolytic activity of matrix metalloproteinases toward extracellular matrix components (ECM), cytokines, chemokines, and membrane receptors is crucial for several homeostatic and pathological processes. Active MMPs are a family of single-chain enzymes (23 family members in the human genome), most of which constituted by a catalytic domain and by a hemopexin-like domain connected by a linker. The X-ray structures of MMP-1 and MMP-2 suggest a conserved and well-defined spatial relationship between the two domains. Here we present structural data for MMP-12, suitably stabilized against self-hydrolysis, both in solution (NMR and SAXS) and in the solid state (X-ray), showing that the hemopexin-like and the catalytic domains experience conformational freedom with respect to each other on a time scale shorter than 10(-8) s. Hints on the probable conformations are also obtained. This experimental finding opens new perspectives for the often hypothesized active role of the hemopexin-like domain in the enzymatic activity of MMPs.  相似文献   

6.
The modulation of calcium binding by the EF-hand motifs present in a calmodulin (CAM) homologue, a calcium binding protein (CaBP) from Entamoeba histolytica by three external parameters-pH, ligand coordinator EGTA, and fragmentor voltage was investigated by mass spectrometry. Calcium binding follows expected patterns at highly acidic and alkaline pH with the preponderance of the apo and the completely saturated forms, respectively. Surprisingly, additional nonspecific binding is observed near neutral pH. Studies on EGTA chelation and effects of fragmentor voltage showed cooperativity in calcium removal in at least one of the domains. Similar studies on a smaller construct containing the two high affinity carboxy terminal sites revealed interesting differences and provided an estimate of the specificity and tolerance of the EF-hand motifs to calcium binding and removal.  相似文献   

7.
通过分子动力学模拟计算研究了Ca2+, Mg2+, K+, Na+与钙调素形成复合物的结构和能量特征. 计算得到了结合不同离子后的钙调素结构差异, 阐明了钙调素对这几种离子具有不同结合性质的结构和动力学原因. 其中, Ca2+与钙调素EF-hand基序中侧链残基上的氧原子形成配位键, 从而使其复合物的结构有较大的改变, 而和Ca2+同一主族, 性质相似的Mg2+及不同主族的Na+和K+, 它们与钙调素的结合能力比Ca2+与钙调素的弱许多, 对钙调素结构的影响也较小, 由此推测钙调素与Ca2+的结合机制和钙调素对Ca2+具有选择性的原因是由离子与钙调素中EF-hand基序的结合强度和构型共同决定的.  相似文献   

8.
We examined HMG domain protein recognition of major 1,2-GG intrastrand DNA crosslinks, formed by two bifunctional enantiomeric analogs of antitumor cis-diamminedichloroplatinum(II) (cisplatin), and removal of these crosslinks during in vitro nucleotide excision repair (NER) reactions. Electrophoretic mobility shift assays show that domains A and B of HMGB1 protein bind to (2R,3R)-diaminobutanedichloroplatinum(II)-generated crosslinks with a higher affinity than to those generated by (2S,3S)-diaminobutanedichloroplatinum(II). The crosslinks of both enantiomers are removed by NER with a similar efficiency; however, HMG1B protein significantly inhibits removal of the (2R,3R)-diaminobutaneplatinum(II) adduct, but not that of the (2S,3S) enantiomer. Thus, HMG domain proteins discriminate among different conformations of the 1,2-GG intrastrand crosslinks of the two enantiomeric analogs of cisplatin, which results in different NER of these crosslinks. This observation may provide insight into the mechanisms underlying antitumor activity of cisplatin and its analogs.  相似文献   

9.
It is an open question whether the conformations of proteins sampled in dilute solutions are the same as in the cellular environment. Here we address this question by double electron-electron resonance (DEER) distance measurements with Gd(III) spin labels to probe the conformations of calmodulin (CaM) in vitro, in cell extract, and in human HeLa cells. Using the CaM mutants N53C/T110C and T34C/T117C labeled with maleimide-DOTA-Gd(III) in the N- and C-terminal domains, we observed broad and varied interdomain distance distributions. The in vitro distance distributions of apo-CaM and holo-CaM in the presence and absence of the IQ target peptide can be described by combinations of closed, open, and collapsed conformations. In cell extract, apo- and holo-CaM bind to target proteins in a similar way as apo- and holo-CaM bind to IQ peptide in vitro. In HeLa cells, however, in the presence or absence of elevated in-cell Ca2+ levels CaM unexpectedly produced more open conformations and very broad distance distributions indicative of many different interactions with in-cell components. These results show-case the importance of in-cell analyses of protein structures.  相似文献   

10.
1-Aminocyclopropane-1-carboxylic oxidase (ACCO) is a non-heme iron(II)-containing enzyme involved in the biosynthesis of the phytohormone ethylene, which regulates fruit ripening and flowering in plants. The active conformation of ACCO, and in particular that of the C-terminal part, remains unclear and open and closed conformations have been proposed. In this work, a combined experimental and computational study to understand the conformation and dynamics of the C-terminal part is reported. Site-directed spin-labeling coupled to electron paramagnetic resonance (SDSL-EPR) spectroscopy was used. Mutagenesis experiments were performed to generate active enzymes bearing two paramagnetic labels (nitroxide radicals) anchored on cysteine residues, one in the main core and one in the C-terminal part. Inter-spin distance distributions were measured by pulsed EPR spectroscopy and compared with the results of molecular dynamics simulations. The results reveal the existence of a flexibility of the C-terminal part. This flexibility generates several conformations of the C-terminal part of ACCO that correspond neither to the existing crystal structures nor to the modelled structures. This highly dynamic region of ACCO raises questions on its exact function during enzymatic activity.  相似文献   

11.

Background  

Bullfrog myosin-1c contains three previously recognized calmodulin-binding IQ domains (IQ1, IQ2, and IQ3) in its neck region; we identified a fourth IQ domain (IQ4), located immediately adjacent to IQ3. How calmodulin binds to these IQ domains is the subject of this report.  相似文献   

12.
Hydrogen/deuterium exchange measurements by mass spectrometry (HX-MS) can be used to report localized conformational mobility within folded proteins, where exchange predominantly occurs through low energy fluctuations in structure, allowing transient solvent exposure. Changes in conformational mobility may impact protein function, even in cases where structural changes are unobservable. Previous studies of the MAP kinase, ERK2, revealed increases in HX upon activation occured at the hinge between conserved N- and C-terminal domains, which could be ascribed to enhanced backbone flexibility. This implied that kinase activation modulates interdomain closure, and was supported by evidence for two modes of nucleotide binding that were consistent with closed vs open conformations in active vs inactive forms of ERK2, respectively. Thus, phosphorylation of ERK2 releases constraints to interdomain closure, by modulating hinge flexibility. In this study, we examined ERK1, which shares 90% sequence identity with ERK2. HX-MS measurements of ERK1 showed similarities with ERK2 in overall deuteration, consistent with their similar tertiary structures. However, the patterns of HX that were altered upon activation of ERK1 differed from those in ERK2. In particular, alterations in HX at the hinge region upon activation of ERK2 did not occur in ERK1, suggesting that the two enzymes differ with respect to their regulation of hinge mobility and interdomain closure. In agreement, HX-MS measurements of nucleotide binding suggested revealed domain closure in both inactive and active forms of ERK1. We conclude that although ERK1 and ERK2 are closely related with respect to primary sequence and tertiary structure, they utilize distinct mechanisms for controlling enzyme function through interdomain interactions.  相似文献   

13.
A novel strategy for fast NMR resonance assignment of (15)N HSQC spectra of proteins is presented. It requires the structure coordinates of the protein, a paramagnetic center, and one or more residue-selectively (15)N-labeled samples. Comparison of sensitive undecoupled (15)N HSQC spectra recorded of paramagnetic and diamagnetic samples yields data for every cross-peak on pseudocontact shift, paramagnetic relaxation enhancement, cross-correlation between Curie-spin and dipole-dipole relaxation, and residual dipolar coupling. Comparison of these four different paramagnetic quantities with predictions from the three-dimensional structure simultaneously yields the resonance assignment and the anisotropy of the susceptibility tensor of the paramagnetic center. The method is demonstrated with the 30 kDa complex between the N-terminal domain of the epsilon subunit and the theta subunit of Escherichia coli DNA polymerase III. The program PLATYPUS was developed to perform the assignment, provide a measure of reliability of the assignment, and determine the susceptibility tensor anisotropy.  相似文献   

14.
The ubiquitous protein metallothionein (MT) has proven to be a major player not only in the homeostasis of Cu(I) and Zn(II), but also binds all the Group 11 and 12 metals. Metallothioneins are characterised by the presence of numerous cys-x-cys and cys-cys motifs in the sequence and are found naturally with either one domain or two, linked, metal-binding domains. The use of chains of these metal-thiolate domains offers the possibility of creating chemically tuneable and, therefore, chemically dependent electrochemical or photochemical surface modifiers or as nanomachinery with nanomechanical properties. In this work, the metal-binding properties of the Cd(4)-containing domain of alpha-rhMT1a assembled into chains of two and three concatenated domains, that is, "necklaces", have been studied by spectrometric techniques, and the interactions within the structures modelled and interpreted by using molecular dynamics. These chains are metallated with 4, 8 or 12 Cd(II) ions to the 11, 22, and 33 cysteinyl sulfur atoms in the alpha-rhMT1a, alphaalpha-rhMT1a, and alphaalphaalpha-rhMT1a proteins, respectively. The effect of pH on the folding of each protein was studied by ESI-MS and optical spectroscopy. MM3/MD simulations were carried out over a period of up to 500 ps by using force-field parameters based on the reported structural data. These calculations provide novel information about the motion of the clustered metallated, partially demetallated, and metal-free peptide chains, with special interest in the region of the metal-binding site. The MD energy/time trajectory conformations show for the first time the flexibility of the metal-sulfur clusters and the bound amino acid chains. We report unexpected and very different sizes for the metallated and demetallated proteins from the combination of experimental data, with molecular dynamics simulations.  相似文献   

15.
Bren KL  Kellogg JA  Kaur R  Wen X 《Inorganic chemistry》2004,43(25):7934-7944
NMR spectroscopy has become a vital tool for studies of protein conformational changes and dynamics. Oxidized Fe(III)cytochromes c are a particularly attractive target for NMR analysis because their paramagnetism (S = (1)/(2)) leads to high (1)H chemical shift dispersion, even for unfolded or otherwise disordered states. In addition, analysis of shifts induced by the hyperfine interaction reveals details of the structure of the heme and its ligands for native and nonnative protein conformational states. The use of NMR spectroscopy to investigate the folding and dynamics of paramagnetic cytochromes c is reviewed here. Studies of nonnative conformations formed by denaturation and by anomalous in vivo maturation (heme attachment) are facilitated by the paramagnetic, low-spin nature of native and nonnative forms of cytochromes c. Investigation of the dynamics of folded cytochromes c also are aided by their paramagnetism. As an example of this analysis, the expression in Escherichia coli of cytochrome c(552) from Nitrosomonas europaea is reported here, along with analysis of its unusual heme hyperfine shifts. The results are suggestive of heme axial methionine fluxion in N. europaea ferricytochrome c(552). The application of NMR spectroscopy to investigate paramagnetic cytochrome c folding and dynamics has advanced our understanding of the structure and dynamics of both native and nonnative states of heme proteins.  相似文献   

16.
Plant Dicer-like proteins (DCLs) belong to the Ribonuclease III (RNase III) enzyme family. They are involved in the regulation of gene expression and antiviral defense through RNA interference pathways. A model plant, Arabidopsis thaliana encodes four DCL proteins (AtDCL1-4) that produce different classes of small regulatory RNAs. Our studies focus on AtDCL4 that processes double-stranded RNAs (dsRNAs) into 21 nucleotide trans-acting small interfering RNAs. So far, little is known about the structures of plant DCLs and the complexes they form with dsRNA. In this work, we present models of the catalytic core of AtDCL4 and AtDCL4-dsRNA complex constructed by computational methods.We built a homology model of the catalytic core of AtDCL4 comprising Platform, PAZ, Connector helix and two RNase III domains. To assemble the AtDCL4-dsRNA complex two modeling approaches were used. In the first method, to establish conformations that allow building a consistent model of the complex, we used Normal Mode Analysis for both dsRNA and AtDCL4. The second strategy involved template-based approach for positioning of the PAZ domain and manual arrangement of the Connector helix. Our results suggest that the spatial orientation of the Connector helix, Platform and PAZ relative to the RNase III domains is crucial for measuring dsRNA of defined length. The modeled complexes provide information about interactions that may contribute to the relative orientations of these domains and to dsRNA binding. All these information can be helpful for understanding the mechanism of AtDCL4-mediated dsRNA recognition and binding, to produce small RNA of specific size.  相似文献   

17.
A series of Eu(III) metallopeptides, designed on the basis of the structural similarity of the helix-turn-helix and EF-hand motifs, have been studied by Eu(III) (7)F(0) --> (5)D(0) excitation spectroscopy. The impact of EF-hand ligand set differences on the hydration number and Eu(III) coordination environment are compared among the peptides. The conditional binding affinities were determined by Eu titration (P3, log K(a) = 6.0 +/- 0.4; P3W, log K(a) = 5.9 +/- 0.2; P5b, log K(a) = 5.3 +/- 0.1). Two similar coordination environments occur in each case, consistent with structural flexibility about the metal site. The coordination environments are consistent with 8- or 9-coordinate Eu(III), including six peptide-based ligands and two to three water molecules (P3, q = 1.9 +/- 0.2; P3W, q = 2.3 +/- 0.2; P4a, q = 1.9 +/- 0.3; P5b, q = 2.6 +/- 0.2). The Eu(III) (7)F(0) --> (5)D(0) excitation spectra are pH-dependent, as reported for several EF-hand proteins (oncomodulin, parvalbumin). A higher energy transition occurs at pH > 6, and has been assigned to deprotonation of coordinated water. The pK(a) leading to this new transition is dependent on Eu(III) Lewis acidity, which varies with the inner and outer sphere ligand set. The noncoordinating ninth position of the Eu-binding loop, which is poised to make second-sphere contacts to the coordinated water, stabilizes the deprotonated form of the coordinated solvent more effectively when it is Thr (P5b) than Asp (P3W). Upon DNA-binding by the metallopeptides, the pK(a) of the pH-dependent peak increases, but no new DNA-dependent transitions are observed. This indicates no DNA-based Eu(III) ligands are introduced, such as phosphate oxygen atoms of the DNA backbone. The hydration number decreases in the presence of DNA (P3W + DNA, q = 1.9 +/- 0.2; P5b + DNA, q = 1.7 +/- 0.2), indicating that DNA-binding by the metallopeptides organizes rather than compromises the Eu-binding site within the peptide.  相似文献   

18.
The blue-light sensitive photoreceptor, phototropin, is a flavoprotein which regulates the phototropism response of higher plants. The photoinduced triplet state and the photoreactivity of the flavin-mononucleotide (FMN) cofactor in two LOV domains of Avena sativa, Adiantum capillus-veneris, and Chlamydomonas reinhardtii phototropin have been studied by time-resolved electron paramagnetic resonance (EPR) and UV-vis spectroscopy at low temperatures (T < or = 80 K). Differences in the electronic structure of the FMN as reflected by altered zero-field splitting parameters of the triplet state could be correlated with changes in the amino acid composition of the binding pocket in wild-type LOV1 and LOV2 as well as in mutant LOV domains. Even at cryogenic temperatures, time-resolved EPR experiments indicate photoreactivity of the wild-type LOV domains, which was further characterized by UV-vis spectroscopy. Wild-type LOV1 and LOV2 were found to form an adduct between the FMN cofactor and the functional cysteine with a yield of 22% and 68%, respectively. The absorption maximum of the low-temperature photoproduct of wild-type LOV2 is red-shifted by about 15 nm as compared with the FMN C(4a)-cysteinyl adduct formed at room temperature. In light of these observations, we discuss a radical-pair reaction mechanism for the primary photoreaction in LOV domains.  相似文献   

19.
A protein can be in different conformations when fulfilling its function. Yet depiction of protein structural ensembles remains difficult. Here we show that the accurate measurement of solvent paramagnetic relaxation enhancement (sPRE) in the presence of an inert paramagnetic cosolute allows the assessment of protein dynamics. Demonstrated with two multi‐domain proteins, we present a method to characterize protein microsecond–millisecond dynamics based on the analysis of the sPRE. Provided with the known structures of a protein, our method uncovers an ensemble of structures that fully accounts for the observed sPRE. In conjunction with molecular dynamics simulations, our method can identify protein alternative conformation that has only been theorized before. Together, our method expands the application of sPRE beyond structural characterization of rigid proteins and complements the established PRE NMR technique.  相似文献   

20.
Essential and Molecular Dynamics (ED/MD) have been used to model the conformational changes of a protein implicated in a conformational disease--cataract, the largest cause of blindness in the world-after non-enzymic post-translational modification. Cyanate modification did not significantly alter flexibility, while the Schiff's base adduct produced a more flexible N-terminal domain, and intra-secondary structure regions, than either the cyanate adduct or the native structure. Glycation also increased linker flexibility and disrupted the charge network. A number of post-translational adducts showed structural disruption around Cys15 and increased linker flexibility; this may be important in subsequent protein aggregation. Our modelling results are in accord with experimental evidence, and show that ED/MD is a useful tool in modelling conformational changes in proteins implicated in disease processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号