首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Broad band solar or 300--400 nm irradiation (Hg--Xe arc source) of liquid-phase carbon disulfide produces a new carbon--sulfur polymer with the approximate (n = 1.04--1.05) stoichiometry (CS(n))(x). The polymer, from here on called (CS)(x), forms as a approximately 200 nm thick transparent golden membrane as measured by SEM and AFM techniques. IR spectra for this polymer show some similarities with those obtained for the gas-phase photopolymerized (CS(2))(x) and the high-pressure-phase polymer of CS(2), called Bridgman's Black. The observed FT-IR absorptions of (CS)(x) include prominent features at 1431 (s, br), 1298 (m), 1250 (ms), and 1070 cm(-1) (m). In contrast to previous proposals for (CS(2))(x), (13)C labeling and model compound studies of alpha-(C(3)S(5))R(2) and beta-(C(3)S(5))R(2) (R = methyl or benzoyl) suggest that the absorption at 1431 cm(-1) and those at 1298 and 1250 cm(-1) are indicative of carbon--carbon double bonds and carbon--carbon single bonds, respectively. The molecular structure of alpha-(C(3)S(5))(C(O)C(6)H(5))(2), determined at -84 degrees C, belongs to space group P1, with a = 7.486(5) A, b = 13.335(11) A, c = 17.830(13) A, alpha = 105.60(6) degrees, beta = 95.32(6) degrees, gamma = 90.46(6) degrees, Z = 4, V = 1706(2) A(3), R = 0.0785, and R(w) = 0.2323. With use of electron and chemical ionization mass spectrometry, C(4)S(6) and C(6)S(7) were identified as the dominant soluble molecular side-products derived from a putative ethylenedithione (S==C==C==S) precursor. Atomic force microscopy (AFM) provided surface topology information for the thin film (CS)(x) and revealed features that suggested the bulk material is formed from small polymer spheres 20--50 nm in size. Both (CS(2))(x) and (CS)(x) are extensively cross-linked through disulfide linkages and both materials show strong EPR resonances (g > 2.006) indicative of sulfur-centered radicals from incomplete cross-linking. A polymerization mechanism based on the intermediacy of S(2)C=CS(2) is proposed.  相似文献   

2.
The reaction of the alpha and beta forms of C3S5(2-) with thiophosgene yields two isomeric carbon sulfides alpha,alpha-C4S6 and alpha,beta-C4S6, respectively. The crystal structures of both compounds could be determined for the first time. Both structures are made up of almost planar molecules. The alpha,alpha-isomer (1,3-dithiolo-(4,5-d)-1,3-dithol-2,5-dithione) is D2h-symmetric, while the alpha,beta-isomer is approximately Cs-symmetric. In the molecules of both isomers the two different C3S5 units are retained without significant alterations of structural parameters. alpha,alpha-C4S6 is unstable with respect to alpha,beta-C4S6. The molecular rearrangement can be induced by a short thermal treatment at 150 degrees C. Significant differences are found in the mass spectra fragmentation patterns. Only alpha,beta-C4S6 shows an intense signal for C3S2+ and is therefore a potential source for the synthesis of carbon subsulfide via flash vacuum pyrolysis. Only alpha,beta-C4S6 forms a stable adduct with I2. alpha,beta-C4S6.I2 was already known (F. L. Lu, K. M. Keshavarz-K, G. Srdanov, R. H. Jacobson and F. Wudl, J. Org. Chem., 1989, 54, 2165, ), but a second polymorph is formed on crystallisation from a different solvent. The two polymorphic forms do not show differences in the structures of the individual molecules but show a different packing pattern. alpha,beta-C4S6.I2 is remarkably thermally stable. Thermal analysis shows that I2 cleavage occurs in that temperature region above 200 degrees C when C-S bonds are broken and CS2 and I2 are simultaneously liberated. Performed at 270 degrees C thermolysis of alpha,beta-C4S6.I2 yields under cleavage of I2 and CS2 a black polymeric carbon sulfide (CS)x which is probably a mixture of graphitic carbon and unidentified amorphous polymeric carbon sulfides.  相似文献   

3.
The structure of (eta2-diphenylacetylene)Pt(PPh3) (2), as well as those of its dichloromethane and benzene solvates, is determined via X-ray crystallography. An investigation of the chemical shift (CS) tensors of the 13C-labeled carbons in Ph13C13CPh and (eta2-Ph13C13CPh)Pt(PPh3)2.(C6H6) is carried out via analysis of 13C NMR spectra from stationary solid samples. The principal components of the CS tensors as well as their orientations with respect to the 13C,13C internuclear vector are determined. DFT calculations of these CS tensors are in close agreement with the experimental values. For diphenylacetylene (tolane), the orientations and principal-component magnitudes of the alkynyl carbon CS tensors are comparable to those for other alkynyl carbons, although the CS tensor is not axially symmetric in this case. Coordination to platinum causes a change in the CS tensor orientation and a net increase in the isotropic chemical shift, resulting from a significant increase in two principal components (delta11 and delta33) while the third (delta22) decreases only slightly. The measured carbon CS tensors in the platinum complex bear a striking similarity to those of the alkenyl carbons in trans-Ph(H)C=C(H)Ph, and a short theoretical discussion of these observations is presented.  相似文献   

4.
The structure and bonding of the chlorine atom/carbon disulfide (CS(2)/Cl) complex involved in selective photochlorination reactions with alkanes was directly probed using transient resonance Raman spectroscopy. The experimental Raman vibrational frequencies were compared to those computed from density functional theory calculations for probable structures of the CS(2)/Cl complex. Our results indicate that the S [double bond] C [double bond] S...Cl complex species is responsible for the approximately 370 nm transient absorption band observed after ultraviolet photolysis of CCl(4) in the presence of CS(2). We discuss the structure and properties of the S [double bond] C [double bond] S...Cl complex and compare them with those for the related benzene/Cl and pyridine/Cl complexes.  相似文献   

5.
Solid-state 93Nb and 13C NMR experiments, in combination with theoretical calculations of NMR tensors, and single-crystal and powder X-ray diffraction experiments, are applied for the comprehensive characterization of structure and dynamics in a series of organometallic niobium complexes. Half-sandwich niobium metallocenes of the forms Cp'Nb(I)(CO)4 and CpNb(V)Cl4 are investigated, where Cp = C5H5- and Cp' = C5H4R- with R = COMe, CO2Me, CO2Et, and COCH2Ph. Anisotropic quadrupolar and chemical shielding (CS) parameters are extracted from 93Nb MAS and static NMR spectra for seven different complexes. It is demonstrated that 93Nb NMR parameters are sensitive to changes in temperature and Cp' ring substitution in the Cp'Nb(I)(CO)4 complexes. There are dramatic differences in the 93Nb quadrupolar coupling constants (C(Q)) between the Nb(I) and Nb(V) complexes, with C(Q) between 1.0 and 12.0 MHz for Cp'Nb(CO)4 and C(Q) = 54.5 MHz for CpNbCl4. The quadrupolar Carr-Purcell Meiboom-Gill (QCPMG) pulse sequence is applied to rapidly acquire, in a piecewise fashion, a high signal-to-noise ultra-wide-line 93Nb NMR spectrum of CpNbCl4, which has a breadth of ca. 400 kHz. Solid-state 93Nb and 13C NMR spectra and powder XRD data are used to identify a new metallocene adduct coordinated at the axial position of the metal site by a THF molecule: CpNb(V)Cl4.THF. 13C MAS and CP/MAS NMR experiments are used to assess the purity of samples, as well as for measuring carbon CS tensors and the rare instance of one-bond 93Nb, 13C J-coupling, 1J(93Nb,13C). Theoretically calculated CS and electric field gradient (EFG) tensors are utilized to determine relationships between tensor orientations, the principal components, and molecular structures.  相似文献   

6.
13C NMR Substituent chemical shift (SCS) increments have been determined for the carbonyl carbon of a variety of substituted benzaldehydes and acetophenones. The 13C NMR chemical shift of the carbonyl carbon can be predicted for many di- and trisubstituted benzaldehydes and acetophenones through simple additivity of the SCS increments. The magnitude and sign of the SCS increments have been explored using Hartree-Fock 6-31G* calculations to determine the natural atomic charges of the carbonyl carbon. When a substituent capable of intermolecular hydrogen bonding is present, deviations from additivity on the order of 2 ppm are observed in dilution experiments; deviations of up to 6 ppm can result from intramolecular hydrogen bonding.  相似文献   

7.
The effect of subtle changes in the sigma-electron donor ability of 4-substituted pyridine ligands on the lead(II) coordination environment of (2,6-Me(2)C(6)H(3)S)(2)Pb (1) adducts has been examined. The reaction of 1 with a series of 4-substituted pyridines in toluene or dichloromethane results in the formation of 1:1 complexes [(2,6-Me(2)C(6)H(3)S)(2)Pb(pyCOH)](2) (3), [(2,6-Me(2)C(6)H(3)S)(2)Pb(pyOMe)](2) (4), and (2,6-Me(2)C(6)H(3)S)(2)Pb(pyNMe(2)) (5) (pyCOH = 4-pyridinecarboxaldehyde; pyOMe = 4-methoxypyridine; pyNMe2 = 4-dimethylaminopyridine), all of which have been structurally characterized by X-ray crystallography. The structures of 3 and 4 are dimeric and have psi-trigonal bipyramidal S(3)N bonding environments, with the 4-substituted pyridine nitrogen and bridging sulfur atoms in axial positions and two thiolate sulfur atoms in equatorial sites. Conversely, compound 5 is monomeric and exhibits a psi-trigonal pyramidal S(2)N bonding environment at lead(II). The observed structures may be rationalized in terms of a simple valence bond model and the sigma-electron donor ability of the 4-pyridine ligands as derived from the analysis of proton affinity values. Solid-state (207)Pb NMR experiments are applied in combination with density functional theory (DFT) calculations to provide further insight into the nature of bonding in 4, 5, and (2,6-Me(2)C(6)H(3)S)(2)Pb(py)(2) (2). The lead chemical shielding (CS) tensor parameters of 2, 4, and 5 reveal some of the largest chemical shielding anisotropies (CSA) observed in lead coordination complexes to date. DFT calculations using the Amsterdam Density Functional (ADF) program, which take into account relativistic effects using the zeroth-order regular approximation (ZORA), yield lead CS tensor components and orientations. Paramagnetic contributions to the lead CS tensor from individual pairs of occupied and virtual molecular orbitals (MOs) are examined to gain insight into the origin of the large CSA. The CS tensor is primarily influenced by mixing of the occupied MOs localized on the sulfur and lead atoms with virtual MOs largely comprised of lead 6p orbitals.  相似文献   

8.
We report a liquid-phase time-resolved X-ray diffraction study that resolves the molecular structures of the short-lived intermediates formed in the photodissociation of tetrabromomethane in methanol. Time-resolved X-ray diffraction can detect all chemical species simultaneously, and the diffraction signal from each chemical species can be quantitatively calculated from molecular structures and compared with experimental data with high accuracy and precision. The photochemistry of carbon tetrahalides has long been explored to describe their reactions in the natural environment due to its relevance to ozone depletion. Excited with an ultraviolet optical pulse, the complicated photodissociation dynamics of CBr4 was followed in a wide temporal range from picoseconds up to microseconds and associated rate coefficients were determined by analyzing time-resolved diffraction patterns accumulated from 100 ps X-ray pulses. The homolytic cleavage of one C-Br bond in the parent CBr4 molecule yields the CBr3 and Br radicals, which escape from the solvent cage and combine nongeminately to form C2Br6 and Br2, respectively. C2Br6 eventually decays to give C2Br4 and Br2 as final stable products. Our diffraction data at the current signal-to-noise ratio could not provide any evidence for the geminate recombination of the CBr3 and Br radicals to form the Br2CBr-Br isomer or the solvated ion pair, implying that their formation is a minor channel compared with those observed clearly by time-resolved diffraction in this work.  相似文献   

9.
By means of Fourier transform microwave spectroscopy of a supersonic molecular beam, we have detected the singly substituted carbon-13 isotopic species of C(5)H, C(6)H, and C(7)H. Hyperfine structure in the rotational transitions of the lowest-energy fine structure component ((2)Pi(12) for C(5)H and C(7)H, and (2)Pi(32) for C(6)H) of each species was measured between 6 and 22 GHz, and precise rotational, centrifugal distortion, Lambda-doubling, and (13)C hyperfine coupling constants were determined. In addition, resolved hyperfine structure in the lowest rotational transition (J = 32-->12) of the three (13)C isotopic species of C(3)H was measured by the same technique. By combining the centimeter-wave measurements here with previous millimeter-wave data, a complete set of (13)C hyperfine coupling constants were derived to high precision for each isotopic species. Experimental structures (r(0)) have been determined for C(5)H and the two longer carbon-chain radicals, and these are found to be in good agreement with the predictions of high-level coupled-cluster calculations. C(3)H, C(5)H, and C(7)H exhibit a clear alternation in the magnitude and sign of the (13)C hyperfine coupling constants along the carbon-chain backbone. Because the electron spin density is nominally zero at the central carbon atom of C(3)H, C(5)H, and C(7)H, and at alternating sets of carbon atoms of C(5)H and C(7)H, owing to spin polarization, almost all of the (13)C coupling constants at these atoms are small in magnitude and negative in sign. Spin-polarization effects are known to be important for the Fermi-contact (b(F)) term, but prior to the work here they have generally been neglected for the hyperfine terms a, c, and d.  相似文献   

10.
Tetrakis(pentafluoroorthotellurate)carbon(IV), C(OTeF5)4, was synthesized by reaction of CBr4 with BrOTeF5 in SO2ClF solution at -78 degrees C and was isolated as a colorless, crystalline solid that is room-temperature stable in SO2ClF and in the solid state. Both natural abundance and 99% 13C-enriched C(OTeF5)4 have been characterized in SO2ClF solution by 13C, 19F, and 125Te NMR spectroscopy. In contrast, C(OTeF5)4 undergoes rapid decomposition to O(TeF5)2 and CO2 in CH3CN at 10 degrees C but is stable at -40 degrees C. The X-ray crystal structures of C(OTeF5)4 and [N(CH3)4][B(OTeF5)4] were determined at -30 and -170 degrees C, respectively. The averages of four smaller C/B-O-Te bond angles and O...O contacts and two larger C/B-O-Te bond angles and O...O contacts of C(OTeF5)4 and the isoelectronic B(OTeF5)4- anion are consistent with local S4 symmetry, as predicted by ligand close packing considerations. The existence of three sets of Te-O-C/B-O torsion angles and the energy-minimized geometries of C(OTeF5)4 and B(OTeF5)4- also confirm their local S4 symmetries. The low-temperature, solid-state Raman spectra of 12/13C(OTeF5)4 and B(OTeF5)4- were assigned and compared. The energy-minimized geometries, vibrational frequencies, natural charges, and natural bond orders of both species have been calculated using density functional theory methods. The calculated geometries are in accord with the S4 symmetries assigned for the experimental structures.  相似文献   

11.
The first structural reports of anhydrous salts containing the CS2N3 moiety are presented. The new M(+)CS2N3- species (M = NH4 (1), (CH3)4N (2), Cs (3), K (4)) were characterized by vibrational spectroscopy (IR, Raman), as well as multinuclear NMR spectroscopy (1H, 13C, 14N NMR). Moreover, the solid-state structures of NH4CS2N3 (1) [orthorhombic, Pbca, a = 10.6787(1) A, b = 6.8762(1) A, c = 15.2174(2) A, V = 1117.40(2) A3, Z = 8] and (H4C)4NCS2N3 (2) [monoclinic, P2(1)/m, a = 5.9011(1) A, b = 7.3565(2) A, c = 10.9474(3) A, beta = 91.428(1) degrees, V = 475.09(2) A3, Z = 2] were determined using X-ray diffraction techniques. The covalent compound CH3CS2N3 (5) was prepared by the reaction of methyl iodide with sodium azidodithiocarbonate and was characterized by vibrational spectroscopy (IR, Raman), multinuclear NMR spectroscopy (1H, 13C, 14N), and X-ray diffraction techniques [monoclinic, P2(1)/m, a = 5.544(1) A, b = 6.4792(7) A, c = 7.629(1) A, beta = 105.53(2) degrees, V = 264.06(7) A3, Z = 2]. Furthermore, the gas-phase structure of 5 was calculated (MPW1PW91/cc-pVTZ) and found to be in very good agreement with the experimentally determined structure. Improved synthetic routes for the recently reported dipseudohalogen (CS2N3)2 and interpseudohalogen CS2N3CN (6) are described, and the calculated gas-phase structure of 6 was compared with the experimentally determined structure (X-ray). The vibrational spectra of 6 and HCS2N3 (7) are also reported. Furthermore, several plausible isomers for 7 were calculated in an attempt to rationalize the experimentally observed structure which has N-H and not S-H connectivity. The lowest energy isomer for 7 is in agreement with the experimentally observed structure, and the Br?nsted acidity was calculated at the MPW1PW91/cc-pVTZ level of theory. The unknown CSe2N3- anion (8) was also investigated both theoretically and experimentally, and the structure and vibrational data for the unknown CTe2N3- anion (9) were investigated by quantum-chemical calculations using a quasi-relativistic pseudopotential for Te (ECP46MWB) and a cc-pVTZ basis set for C and N. The gas-phase structure of 9 is predicted to be that of a five-membered ring in analogy to the sulfur and selenium analogues.  相似文献   

12.
Results are reported for experimental measurements of the room-temperature chemical reactions between ground-state Hg*+ ions and 16 important environmental and biological gases: SF6, CO, CO2, N2O, D2O, CH4, CH3F, O2, CH3Cl, OCS, CS2, NH3, C6F6, NO2, NO*, and C6H6. The inductively coupled plasma/selected-ion flow tube tandem mass spectrometer used for these measurements has provided both rate and equilibrium constants. Efficient electron transfer (>19%) is observed with CS2, NH3, C6F6, NO2, NO*, and C6H6, molecular addition occurs with D2O, CH4, CH3F, CH3Cl, and OCS, and SF6, CO, CO2, N2O, and O2 showed no measurable reactivity with Hg*+. Theory is used to explore the stabilities and structures of both the observed and unobserved molecular adducts of Hg*+, and reasonable agreement is obtained with experimental observations, given the uncertainties of the theory and experiments. A correlation is reported between the Hg*+ and proton affinities of the ligands investigated. Solvation of Hg*+ with formic acid was observed to increase the rate of electron transfer from NO* by more than 20%.  相似文献   

13.
Copper-carbon clusters, formed by dual Nd/YAG laser vaporization, have been trapped in solid Ar at 12 K and investigated by infrared spectroscopy. Density functional calculations of a number of possible molecular structures for Cu/carbon clusters have been performed, and their associated vibrational harmonic mode frequencies and dissociation energies have been determined with a 6-311++G(3df) basis set using both B3LYP and MPW1PW91 functionals. Both computations and (13)C-isotopic substitution experiments indicate that new bands observed at 1830.0 and 1250.5 cm(-1) are due to the asymmetric and symmetric CC stretching modes, respectively, in the near-linear CuC3(X(2)A') cluster. Photoinduced (12/13)C-isotopic scrambling in Cu(12/13)C3 clusters has also been observed. The mechanism for the photoscrambling is shown to involve the formation of a bicyclic CuC3 isomer.  相似文献   

14.
From the whole herb of Leucas cephalotes SPRENG., new labdane-, norlabdane- and abietane-type diterpenes named leucasdins A (1), B (2) and C (3), respectively, and two protostane-type triterpenes named leucastrins A (4) and B (5) were isolated, together with a known triterpene, oleanolic acid, five sterols, 7-oxositosterol, 7-oxostigmasterol, 7alpha-hydroxysitosterol, 7alpha-hydroxystigmasterol and stigmasterol, and eight flavones, 5-hydroxy-7,4'-dimethoxyflavone, pillion, gonzalitosin I, tricin, cosmosin, apigenin 7-O-beta-D-(6-O-p-coumaroyl)glucopyranoside, anisofolin A and luteolin 4'-O-beta-D-glucuronopyranoside. The structures of 1--5 were determined as (3S,6R,8R,9R,13S,16S)-9,13,15,16-bisepoxy-3,16-diacetoxy-6-formyloxylabdane, (3S,6R)-3-acetoxy-6-formyloxy-iso-ambreinolide, (4R,9S,12R,13R)-12,13-dihydroxyabiet-7-en-18-oic acid, (3S,17S,20S,24S)-3,20-dihydroxy-24-methylprotost-25-en, and (3S,17S,20S,24S)-3,20,24-trihydroxyprotost-25-en respectively, based on spectral and chemical data.  相似文献   

15.
A series of N-alkyldithiocarbamato complexes [M(S2CNHR)2] (M=Cd(II), Zn(II); R=C2H5, C4H9, C6H13, C12H25) have been synthesised and characterized. The decomposition of these complexes to sulfates has been investigated, and a mechanism proposed. The structures of [Zn(S2CNHHex)2], [Cd(SO4)2(NC5H5)4)]n and [Cd(SO4)2(NC5H5)2(H2O)2)]n have been determined by X-ray single crystal method. The cadmium complex [Cd(S2CNHC12H25)2] and zinc complex [Zn(S2CNHC6H13)2] were used as single-source precursors to synthesize CdS and ZnS nanoparticles, respectively. The synthesis of CdS nanoparticles was carried under various thermolysis conditions and changes in the shape of derived nanoparticles were studied by transmission electron microscope (TEM).  相似文献   

16.
Four activated carbons (S1-S4) possessing different structural characteristics were prepared by carbonization of commercial resins (used for ion exchange) and subsequent activation. Their textural parameters were determined on the basis of nitrogen adsorption-desorption at 77.4 K, analyzed by applying several local and overall adsorption isotherm equations. The nature of carbon surface functionalities was analyzed by FTIR spectroscopy. The GC and solid-phase extraction (SPE) techniques were applied to study the influence of the texture of carbonaceous materials on their adsorptive properties. The adsorption efficiency of synthesized carbons with respect to alkylhalides used as probe compounds in the GC measurements varied over a range from 28% (C(2)H(3)Cl(3)/S2) to 85% (CHBr(3)/S1) depending on the type of adsorbates and adsorbents. The concentrating efficiency of these carbons in SPE of explosive materials changed over a larger range from 12% (trinitroglycerin/S4) and 13% (trinitrotoluene/S2) up to 100% (octogen/S1). Active carbon prepared using Zerolite 225x8 as a precursor demonstrated better results than other carbons in two types of adsorption with average values of the efficiency of 75.4% for explosives and 60.8% for alkylhalides.  相似文献   

17.
A novel carbon nitride compound, structurally related to the proposed graphitic phase of C(3)N(4), has been synthesized in a bulk well-crystallized form. The new material, with stoichiometry C(6)N(9)H(4)Cl, was prepared through a solid-state reaction of 2,4,6-triamino-1,3,5-triazine with 2,4,6-trichloro-1,3,5-triazine at 1.0-1.5 GPa and 500-550 degrees C and also through a self-reaction of 2-amino-4,6-dichloro-1,3,5-triazine at similar conditions. X-ray and electron diffraction measurements on the yellowish compound indicate a hexagonal space group (P6(3)/m) with cell parameters of a = 8.4379(10) A and c = 6.4296(2) A. This new compound possesses a two-dimensional C(6)N(9)H(3) framework that is structurally related to the hypothetical P6m2 graphitic phase of C(3)N(4), but with an ordered arrangement of C(3)N(3) voids. The large voids in the graphene sheets are occupied by chloride ions with an equivalent number of nitrogen atoms on the framework protonated for charge balance. The composition of the sample was determined by bulk chemical analysis and confirmed by electron energy loss (EELS) spectroscopy. The chemical and structural model is consistent with bulk density measurements and with the infrared and (13)C NMR spectra. This work represents the first bulk synthesis of a well-characterized and highly crystalline material containing a continuous network of alternating carbon and nitrogen atoms.  相似文献   

18.
Neutrals CCCO, CC(13)CO, CCCS and CC(13)CS have been prepared by one-electron vertical (Franck-Condon) oxidation of the precursor anion radicals (CCCO)(-*), (CC(13)CO)(-*), (CCCS)(-*) and (CC(13)CS)(-*)respectively in collision cells of a reverse sector mass spectrometer. Ionisation of the neutrals to decomposing cations shows the neutrals to be stable for the microsecond duration of the neutralisation-ionisation ((-)NR(+)) experiment. No rearrangement of the label in energised CC(13)CO or CC(13)CS occurs during these experiments. In contrast, minor rearrangement of (CC(13)CO)(+*) is observed [(CC(13)CO)(+*)-->(OCC(13)C)(+*), while significant rearrangement occurs for (CC(13)CS)(+*) [(CC(13)CS)(+*)-->(SCC(13)C)(+*)]. Theoretical calculations at the CCSD(T)/aug-cc-pVDZ//B3LYP/6-31G(d) level of theory show that the cationic rearrangements occur by stepwise processes via key rhombic structures. Overall, the degenerate processes result in O and S migration from C-3 to C-1. The cations (CCCO)(+*) and (CCCS)(+*) require excess energies of > or = 516 and > or = 226 kJ mol(-1) respectively to effect rearrangement.  相似文献   

19.
The complex potential energy surface of the gas-phase reaction of HB(H)BH- with CS2 to give three low-lying products [B2H3S]- + CS, [BH2CS]- + HBS, and [BH3CS] + BS-, involving nine [B2H3CS2]- isomers and 12 transition states, has been investigated at the CCSD(T)/6-311++G(d,p)/B3LYP/6-311++G(d,p) level. Our calculations are in harmony with the recent experimental and theoretical results, and reveal some new bonding and kinetic features of this reaction system. Our theoretical results may help the further identification of the products [BH2CS]- + HBS and [BH3CS] + BS- and may provide useful information on the chemical behaviors of other electron-deficient boron hydride anions.  相似文献   

20.
During the preparation of AsBr4(+)[Al(OR)4]-, the novel carbocation CS2Br3+ was synthesized by reaction of AsBr3, Br2, CS2, and Ag[Al(OR)4] (R=C(CF3)3). CS2Br3(+)[Al(OR)4]- was characterized by its crystal structure, NMR and IR spectroscopy, and quantum chemical calculations (including COSMO solvation enthalpies). Additional experiments as well as the computed thermodynamics indicated two likely reaction pathways: Ag(+) +2Br2 +CS2-->CS2Br3(+) +AgBr and the direct 4e- oxidation reaction AsBr4(+) +CS2-->CS2Br3(+) + 1/6As6Br6. Both reactions were observed experimentally and were calculated to be exergonic in solution by -226 and -56 kJ mol(-1) respectively. As a result of charge delocalization the C-S and C-Br distances in the cation are shortened by 0.06 to 0.08 A; the S--Br distances are also slightly shortened indicating a delocalization of the charge also to the bromine atoms in the (S--Br moieties. Based on an analysis of the cation-anion contacts as well as quantum chemical MP2 calculations, a delocalization model as a planar 10 pi electron system is discussed and the pi molecular orbitals are given. It will be shown that the electronic situation of CS2Br3+ is very close to that in CBr3+, that is, the properties of SBr moieties and Br atoms as pi donors towards a formal C+ center are comparable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号