首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The landing of a passenger aircraft in the presence of windshear is a threat to aviation safety. The present paper is concerned with the abort landing of an aircraft in such a serious situation. Mathematically, the flight maneuver can be described by a minimax optimal control problem. By transforming this minimax problem into an optimal control problem of standard form, a state constraint has to be taken into account which is of order three. Moreover, two additional constraints, a first-order state constraint and a control variable constraint, are imposed upon the model. Since the only control variable appears linearly, the Hamiltonian is not regular. Thus, well-known existence theorems about the occurrence of boundary arcs and boundary points cannot be applied. Numerically, this optimal control problem is solved by means of the multiple shooting method in connection with an appropriate homotopy strategy. The solution obtained here satisfies all the sharp necessary conditions including those depending on the sign of certain multipliers. The trajectory consists of bang-bang and singular subarcs, as well as boundary subarcs induced by the two state constraints. The occurrence of boundary arcs is known to be impossible for regular Hamiltonians and odd-ordered state constraints if the order exceeds two. Additionally, a boundary point also occurs where the third-order state constraint is active. Such a situation is known to be the only possibility for odd-ordered state constraints to be active if the order exceeds two and if the Hamiltonian is regular. Because of the complexity of the optimal control, this single problem combines many of the features that make this kind of optimal control problems extremely hard to solve. Moreover, the problem contains nonsmooth data arising from the approximations of the aerodynamic forces and the distribution of the wind velocity components. Therefore, the paper can serve as some sort of user's guide to solve inequality constrained real-life optimal control problems by multiple shooting.An extended abstract of this paper was presented at the 8th IFAC Workshop on Control Applications of Nonlinear Programming and Optimization, Paris, France, 1989 (see Ref. 1).This paper is dedicated to Professor Hans J. Stetter on the occasion of his 60th birthday.  相似文献   

2.
This paper presents the application of the multiple shooting technique to minimax optimal control problems (optimal control problems with Chebyshev performance index). A standard transformation is used to convert the minimax problem into an equivalent optimal control problem with state variable inequality constraints. Using this technique, the highly developed theory on the necessary conditions for state-restricted optimal control problems can be applied advantageously. It is shown that, in general, these necessary conditions lead to a boundary-value problem with switching conditions, which can be treated numerically by a special version of the multiple shooting algorithm. The method is tested on the problem of the optimal heating and cooling of a house. This application shows some typical difficulties arising with minimax optimal control problems, i.e., the estimation of the switching structure which is dependent on the parameters of the problem. This difficulty can be overcome by a careful application of a continuity method. Numerical solutions for the example are presented which demonstrate the efficiency of the method proposed.  相似文献   

3.
This paper is concerned with optimal flight trajectories in the presence of windshear. The abort landing problem is considered with reference to flight in a vertical plane. It is assumed that, upon sensing that the airplane is in a windshear, the pilot increases the power setting at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant. Hence, the only control is the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.The performance index being minimized is the peak value of the altitude drop. The resulting optimization problem is a minimax problem or Chebyshev problem of optimal control, which can be converted into a Bolza problem through suitable transformations. The Bolza problem is then solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems. Numerical results are obtained for several combinations of windshear intensities, initial altitudes, and power setting rates.For strong-to-severe windshears, the following conclusions are reached: (i) the optimal trajectory includes three branches: a descending flight branch, followed by a nearly horizontal flight branch, followed by an ascending flight branch after the aircraft has passed through the shear region; (ii) along an optimal trajectory, the point of minimum velocity is reached at about the time when the shear ends; (iii) the peak altitude drop depends on the windshear intensity, the initial altitude, and the power setting rate; it increases as the windshear intensity increases and the initial altitude increases; and it decreases as the power setting rate increases; (iv) the peak altitude drop of the optimal abort landing trajectory is less than the peak altitude drop of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory; (v) the survival capability of the optimal abort landing trajectory in a severe windshear is superior to that of comparison trajectories, for example, the constant pitch guidance trajectory and the maximum angle of attack guidance trajectory.Portions of this paper were presented at the IFAC 10th World Congress, Munich, Germany, July 27–31, 1987 (Paper No. IFAC-87-9221).This research was supported by NASA Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company (BCAC), and by Air Line Pilots Association (ALPA). Discussions with Dr. R. L. Bowles (NASA-LRC) and Mr. C. R. Higgins (BCAC) are acknowledged.  相似文献   

4.
This paper considers parametric nonlinear control problems subject to mixed control-state constraints. The data perturbations are modeled by a parameterp of a Banach space. Using recent second-order sufficient conditions (SSC), it is shown that the optimal solution and the adjoint multipliers are differentiable functions of the parameter. The proof blends numerical shooting techniques for solving the associated boundary-value problem with theoretical methods for obtaining SSC. In a first step, a differentiable family of extremals for the underlying parameteric boundary-value problem is constructed by assuming the regularity of the shooting matrix. Optimality of this family of extremals can be established in a second step when SSC are imposed. This is achieved by building a bridge between the variational system corresponding to the boundary-value problem, solutions of the associated Riccati ODE, and SSC.Solution differentiability provides a theoretical basis for performing a numerical sensitivity analysis of first order. Two numerical examples are worked out in detail that aim at reducing the considerable deficit of numerical examples in this area of research.This paper is dedicated to Professor J. Stoer on the occasion of his 60th birthday.The authors are indebted to K. Malanowski for helpful discussions.  相似文献   

5.
To solve the multipoint boundary-value problem (MPBVP) associated with a constrained optimal control problem, one needs a good guess not only for the state but also for the costate variables. A direct multiple shooting method is described, which yields approximations of the optimal state and control histories. The Kuhn–Tucker conditions for the optimal parametric control are rewritten using adjoint variables. From this representation, estimates for the adjoint variables at the multiple shooting nodes are derived. The estimates are proved to be consistent, in the sense that they converge toward the MPBVP solution if the parametrization is refined. An optimal aircraft maneuver demonstrates the transition from the direct to the indirect method.  相似文献   

6.
This paper is concerned with optimal flight trajectories in the presence of windshear. The penetration landing problem is considered with reference to flight in a vertical plane, governed by either one control (the angle of attack, if the power setting is predetermined) or two controls (the angle of attack and the power setting). Inequality constraints are imposed on the angle of attack, the power setting, and their time derivatives.The performance index being minimized measures the deviation of the flight trajectory from a nominal trajectory. In turn, the nominal trajectory includes two parts: the approach part, in which the slope is constant; and the flare part, in which the slope is a linear function of the horizontal distance. In the optimization process, the time is free; the absolute path inclination at touchdown is specified; the touchdown velocity is subject to upper and lower bounds; and the touchdown distance is subject to upper and lower bounds.Three power setting schemes are investigated: (S1) maximum power setting; (S2) constant power setting; and (S3) control power setting. In Scheme (S1), it is assumed that, immediately after the windshear onset, the power setting is increased at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant; in this scheme, the only control is the angle of attack. In Scheme (S2), it is assumed that the power setting is held at a constant value, equal to the prewindshear value; in this scheme, the only control is the angle of attack. In Scheme (S3), the power setting is regarded as a control, just as the angle of attack.Under the above conditions, the optimal control problem is solved by means of the primal sequential gradient-restoration algorithm (PSGRA). Numerical results are obtained for several combinations of windshear intensities and initial altitudes. The main conclusions are given below with reference to strong-to-severe windshears.In Scheme (S1), the touchdown requirements can be satisfied for relatively low initial altitudes, while they cannot be satisfied for relatively high initial altitudes; the major inconvenient is excess of velocity at touchdown. In Scheme (S2), the touchdown requirements cannot be satisfied, regardless of the initial altitude; the major inconvenient is defect of horizontal distance at touchdown.In Scheme (S3), the touchdown requirements can be satisfied, and the optimal trajectories exhibit the following characteristics: (i) the angle of attack has an initial decrease, which is followed by a gradual, sustained increase; the largest value of the angle of attack is attained near the end of the shear; in the aftershear region, the angle of attack decreases gradually; (ii) initially, the power setting increases rapidly until maximum power setting is reached; then, maximum power setting is maintained in the shear region; in the aftershear region, the power setting decreases gradually; (iii) the relative velocity decreases in the shear region and increases in the aftershear region; the point of minimum velocity occurs at the end of the shear; and (iv) depending on the windshear intensity and the initial altitude, the deviations of the flight trajectory from the nominal trajectory can be considerable in the shear region; however, these deviations become small in the aftershear region, and the optimal flight trajectory recovers the nominal trajectory.A comparison is shown between the optimal trajectories of Scheme (S3) and the trajectories arising from alternative guidance schemes, such as fixed controls (fixed angle of attack, coupled with fixed power setting) and autoland (angle of attack controlled via path inclination signals, coupled with power setting controlled via velocity signals). The superiority of the optimal trajectories of Scheme (S3) is shown in terms of the ability to meet the path inclination, velocity, and distance requirements at touchdown. Therefore, it is felt that guidance schemes based on the properties of the optimal trajectories of Scheme (S3) should prove to be superior to alternative guidance schemes, such as the fixed control guidance scheme and the autoland guidance scheme.Portions of this paper were presented at the AIAA 26th Aerospace Sciences Meeting, Reno, Nevada, January 11–14, 1988 (Paper No. AIAA-88-0580).This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company (BCAC), and by Air Line Pilots Association (ALPA).The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, and to Dr. G. R. Hennig, Boeing Commercial Airplane Company, for helpful discussions.  相似文献   

7.
In this paper, we consider a model for a fed-batch fermentation process which describes the biosynthesis of penicillin. First, we solve the problem numerically by using a direct shooting method. By discretization of the control variable, we transform the basic optimal control problem to a finite-dimensional nonlinear programming problem, which is solved numerically by a standard SQP method. Contrary to earlier investigations (Luus, 1993), we consider the problem as a free final time problem, thus obtaining an improved value of the penicillin output. The results indicate that the assumption of a continuous control which underlies the discretization scheme seems not to be valid. In a second step, we apply classical optimal control theory to the fed-batch fermentation problem. We derive a boundary-value problem (BVP) with switching conditions, which can be solved numerically by multiple shooting techniques. It turns out that this BVP is sensitive, which is due to the rigid behavior of the specific growth rate functions. By relaxation of the characteristic parameters, we obtain a simpler BVP, which can be solved by using the predicted control structure (Lim et al., 1986). Now, by path continuation methods, the parameters are changed up to the original values. Thus, we obtain a solution which satisfies all first-order and second-order necessary conditions of optimal control theory. The solution is similar to the one obtained by direct methods, but in addition it contains certain very small bang-bang subarcs of the control. Earlier results on the maximal output of penicillin are improved.  相似文献   

8.
In this paper, we describe the implementation aspects of an optimization algorithm for optimal control problems with control, state, and terminal constraints presented in our earlier paper. The important aspect of the implementation is that, in the direction-finding subproblems, it is necessary only to impose the state constraint at relatively few points in the time involved. This contributes significantly to the algorithmic efficiency. The algorithm is applied to solve several optimal control problems, including the problem of the abort landing of an aircraft in the presence of windshear.  相似文献   

9.
Complex pursuit-evasion games with state variable inequality constraints are investigated. Necessary conditions of the first and the second order for optimal trajectories are developed, which enable the calculation of optimal open-loop strategies. The necessary conditions on singular surfaces induced by state constraints and non-smooth data are discussed in detail. These conditions lead to multi-point boundary-value problems which can be solved very efficiently and very accurately by the multiple shooting method. A realistically modelled pursuit-evasion problem for one air-to-air missile versus one high performance aircraft in a vertical plane serves as an example. For this pursuit-evasion game, the barrier surface is investigated, which determines the firing range of the missile. The numerical method for solving this problem and extensive numerical results will be presented and discussed in Part 2 of this paper; see Ref. 1.This paper is dedicated to the memory of Professor John V. Breakwell.The authors would like to express their sincere and grateful appreciation to Professors R. Bulirsch and K. H. Well for their encouraging interest in this work.  相似文献   

10.
The method presented here is an extension of the multiple shooting algorithm in order to handle multipoint boundary-value problems and problems of optimal control in the special situation of singular controls or constraints on the state variables. This generalization allows a direct treatment of (nonlinear) conditions at switching points. As an example a model of optimal heating and cooling by solar energy is considered. The model is given in the form of an optimal control problem with three control functions appearing linearly and a first order constraint on the state variables. Numerical solutions of this problem by multiple shooting techniques are presented.  相似文献   

11.
An optimal control problem with four linear controls describing a sophisticated concern model is investigated. The numerical solution of this problem by combination of a direct collocation and an indirect multiple shooting method is presented and discussed. The approximation provided by the direct method is used to estimate the switching structure caused by the four controls occurring linearly. The optimal controls have bang-bang subarcs as well as constrained and singular subarcs. The derivation of necessary conditions from optimal control theory is aimed at the subsequent application of an indirect multiple shooting method but is also interesting from a mathematical point of view. Due to the linear occurrence of the controls, the minimum principle leads to a linear programming problem. Therefore, the Karush–Kuhn–Tucker conditions can be used for an optimality check of the solution obtained by the indirect method.  相似文献   

12.
Optimal abort landing trajectories of an aircraft under different windshear-downburst situations are computed and discussed. In order to avoid an airplane crash due to severe winds encountered by the aircraft during the landing approach, the minimum altitude obtained during the abort landing maneuver is to be maximized. This maneuver is mathematically described by a Chebyshev optimal control problem. By a transformation to an optimal control problem of Mayer type, an additional state variable inequality constraint for the altitude has to be taken into account; here, its order is three. Due to this altitude constraint, the optimal trajectories exhibit, depending on the windshear parameters, up to four touch points and also up to one boundary arc at the minimum altitude level. The control variable is the angle of attack time rate which enters the equations of motion linearly; therefore, the Hamiltonian of the problem is nonregular. The switching structures also includes up to three singular subarcs and up to two boundary subarcs of an angle of attack constraint of first order. This structure can be obtained by applying some advanced necessary conditions of optimal control theory in combination with the multiple-shooting method. The optimal solutions exhibit an oscillatory behavior, reaching the minimum altitude level several times. By the optimization, the maximum survival capability can also be determined; this is the maximum wind velocity difference for which recovery from windshear is just possible. The computed optimal trajectories may serve as benchmark trajectories, both for guidance laws that are desirable to approach in actual flight and for optimal trajectories may then serve as benchmark trajectories both for guidance schemes and also for numerical methods for problems of optimal control.This paper is dedicated to Professor George Leitmann on the occasion of his seventieth birthday.  相似文献   

13.
This paper deals with optimization of a class of nonlinear dynamic systems with n states and m control inputs commanded to move between two fixed states in a prescribed time. Using conventional procedures with Lagrange multipliers, it is well known that the optimal trajectory is the solution of a two-point boundary-value problem. In this paper, a new procedure for dynamic optimization is presented which relies on tools of feedback linearization to transform nonlinear dynamic systems into linear systems. In this new form, the states and controls can be written as higher derivatives of a subset of the states. Using this new form, it is possible to change constrained dynamic optimization problems into unconstrained problems. The necessary conditions for optimality are then solved efficiently using weighted residual methods.  相似文献   

14.
A discrete time optimal forestry model is built and a shooting method solution algorithm identified. The applicability of the model and algorithm to public policies that affect forestry resources is demonstrated in an application of the model to examine the development of wood processing capacity in Southeast Asia. The necessary conditions of the optimal control model are manipulated to identify a difference equation problem with initial and terminal conditions. The solution to this boundary value problem is identified using a search routine that repetitively, numerically evaluates (shoots) the difference equations. The solution is the trajectory that satisfies the initial and terminal conditions.  相似文献   

15.
This paper presents a Lie-group shooting method for the numerical solutions of multi-dimensional nonlinear boundary-value problems, which may exhibit multiple solutions. The Lie-group shooting method is a powerful technique to search unknown initial conditions through a single parameter, which is determined by matching the multiple targets through a minimum of an appropriately defined measure of the mis-matching error to target equations. Several numerical examples are examined to show that the novel approach is highly efficient and accurate. The number of solutions can be identified in advance, and all possible solutions can be numerically integrated by using the fourth-order Runge–Kutta method. We also apply the Lie-group shooting method to a numerical solution of an optimal control problem of the Duffing oscillator.  相似文献   

16.
This paper is concerned with the near-optimum guidance of an aircraft from quasi-steady flight to quasi-steady flight in a windshear. The take-off problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is considered. It is assumed that the power setting is held at the maximum value and that the aircraft is controlled through the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.First, trajectory optimization is considered. The optimal transition problem is formulated as a Chebyshev problem of optimal control: the performance index being minimized is the peak value of the modulus of the difference between the absolute path inclination and a reference value, assumed constant. Two types of optimal trajectories are studied: type 1 is concerned with gamma recovery (recovery of the initial value of the relative path inclination); and type 2 is concerned with quasisteady flight recovery (recovery of the initial values of the relative velocity, the relative path inclination, and the relative angle of attack). The numerical results show that the type 1 trajectory and the type 2 trajectory are nearly the same in the shear portion, while they diverge to a considerable degree in the aftershear portion of the optimal trajectory.Next, trajectory guidance is considered. A guidance scheme is developed so as to achieve near-optimum quasi-steady flight recovery in a windshear. The guidance scheme for quasi-steady flight recovery includes three parts in sequence. The first part refers to the shear portion of the trajectory and is based on the result that this portion of the trajectory depends only mildly on the boundary conditions; therefore, any of the guidance schemes already developed for type 1 trajectories can be employed (for instance, variable gamma guidance). The second part (constant gamma guidance) refers to the initial aftershear portion of the trajectory and is designed to achieve almost velocity recovery. The third part (constant rate of climb guidance) refers to the final aftershear portion of the trajectory and is designed to achieve almost complete restoration of the initial quasi-steady state.While the shear guidance and the initial aftershear guidance employ constant gain coefficients, the final aftershear guidance employs a variable gain coefficient. This is done in order to obtain accuracy and prompt response, while avoiding oscillations and overshoots. The numerical results show that the guidance scheme for quasi-steady flight recovery yields a transition from quasi-steady flight to quasi-steady flight which is close to that of the optimal trajectory, ensures the restoration of the initial quasi-steady state, and has good stability properties.This paper is based on Refs. 1 and 2.This research was supported by NASA-Langley Research Center, Grant No. NAG-1-516, and by Boeing Commercial Aircraft Company. The authors are indebted to Dr. R. L. Bowles, NASA-Langley Research Center, for helpful discussions.  相似文献   

17.
This paper is concerned with the problem of the optimal coplanaraeroassisted orbital transfer of a spacecraft from a high Earth orbitto a low Earth orbit. It is assumed that the initial and final orbits arecircular and that the gravitational field is central and is governed by theinverse square law. The whole trajectory is assumed to consist of twoimpulsive velocity changes at the begin and end of one interior atmosphericsubarc, where the vehicle is controlled via the lift coefficient.The problem is reduced to the atmospheric part of the trajectory, thusarriving at an optimal control problem with free final time and liftcoefficient as the only (bounded) control variable. For this problem,the necessary conditions of optimal control theory are derived. Applyingmultiple shooting techniques, two trajectories with different controlstructures are computed. The first trajectory is characterized by a liftcoefficient at its minimum value during the whole atmospheric pass. For thesecond trajectory, an optimal control history with a boundary subarcfollowed by a free subarc is chosen. It turns out, that this secondtrajectory satisfies the minimum principle, whereas the first one fails tosatisfy this necessary condition; nevertheless, the characteristicvelocities of the two trajectories differ only in the sixth significantdigit.In the second part of the paper, the assumption of impulsive velocitychanges is dropped. Instead, a more realistic modeling with twofinite-thrust subarcs in the nonatmospheric part of the trajectory isconsidered. The resulting optimal control problem now describes the wholemaneuver including the nonatmospheric parts. It contains as controlvariables the thrust, thrust angle, and lift coefficient. Further,the mass of the vehicle is treated as an additional state variable. For thisoptimal control problem, numerical solutions are presented. They are comparedwith the solutions of the impulsive model.  相似文献   

18.
The Hamiltonian boundary-value problem, associated with a singularly-perturbed linear-quadratic optimal control problem with delay in the state variables, is considered. A formal asymptotic solution of this boundary-value problem is constructed by application of the boundary function method. The justification of this asymptotic solution is done. The asymptotic solution of the Hamiltonian boundary-value problem is constructed and justified assuming boundary-layer stabilizability and detectability.  相似文献   

19.
This paper is concerned with the optimal transition and the near-optimum guidance of an aircraft from quasi-steady flight to quasi-steady flight in a windshear. The abort landing problem is considered with reference to flight in a vertical plane. In addition to the horizontal shear, the presence of a downdraft is considered.It is assumed that a transition from descending flight to ascending flight is desired; that the initial state corresponds to quasi-steady flight with absolute path inclination of –3.0 deg; and that the final path inclination corresponds to quasi-steady steepest climb. Also, it is assumed that, as soon as the shear is detected, the power setting is increased at a constant time rate until maximum power setting is reached; afterward, the power setting is held constant. Hence, the only control is the angle of attack. Inequality constraints are imposed on both the angle of attack and its time derivative.First, trajectory optimization is considered. The optimal transition problem is formulated as a Chebyshev problem of optimal control: the performance index being minimized is the peak value of the modulus of the difference between the instantaneous altitude and a reference value, assumed constant. By suitable transformations, the Chebyshev problem is converted into a Bolza problem. Then, the Bolza problem is solved employing the dual sequential gradient-restoration algorithm (DSGRA) for optimal control problems.Two types of optimal trajectories are studied, depending on the conditions desired at the final point. Type 1 is concerned with gamma recovery (recovery of the value of the relative path inclination corresponding to quasi-steady steepest climb). Type 2 is concerned with quasi-steady flight recovery (recovery of the values of the relative path inclination, the relative velocity, and the relative angle of attack corresponding to quasi-steady steepest climb). Both the Type 1 trajectory and the Type 2 trajectory include three branches: descending flight, nearly horizontal flight, and ascending flight. Also, for both the Type 1 trajectory and the Type 2 trajectory, descending flight takes place in the shear portion of the trajectory; horizontal flight takes place partly in the shear portion and partly in the aftershear portion of the trajectory; and ascending flight takes place in the aftershear portion of the trajectory. While the Type 1 trajectory and the Type 2 trajectory are nearly the same in the shear portion, they diverge to a considerable degree in the aftershear portion of the trajectory.Next, trajectory guidance is considered. Two guidance schemes are developed so as to achieve near-optimum transition from quasi-steady descending flight to quasi-steady ascending flight: acceleration guidance (based on the relative acceleration) and gamma guidance (based on the absolute path inclination).The guidance schemes for quasi-steady flight recovery in abort landing include two parts in sequence: shear guidance and aftershear guidance. The shear guidance is based on the result that the shear portion of the trajectory depends only mildly on the boundary conditions. Therefore, any of the guidance schemes already developed for Type 1 trajectories can be employed for Type 2 trajectories (descent guidance followed by recovery guidance). The aftershear guidance is based on the result that the aftershear portion of the trajectory depends strongly on the boundary conditions; therefore, the guidance schemes developed for Type 1 trajectories cannot be employed for Type 2 trajectories. For Type 2 trajectories, the aftershear guidance includes level flight guidance followed by ascent guidance. The level flight guidance is designed to achieve almost complete velocity recovery; the ascent guidance is designed to achieve the desired final quasi-steady state.The numerical results show that the guidance schemes for quasi-steady flight recovery yield a transition from quasi-steady flight to quasi-steady flight which is close to that of the optimal trajectory, allows the aircraft to achieve the final quasi-steady state, and has good stability properties.This research was supported by NASA Langley Research Center, Grant No. NAG-1-516, by Boeing Commercial Airplane Company, and by Air Line Pilots Association.The authors are indebted to Dr. R. L. Bowles (NASA-LRC) and Dr. G. R. Hennig (BCAC) for helpful discussions.  相似文献   

20.
Near-Optimal Controls of a Class of Volterra Integral Systems   总被引:2,自引:0,他引:2  
In a recent paper by Zhou (Ref. 1), the concept of near-optimal controls was introduced for a class of optimal control problems involving ordinary differential equations. Necessary and sufficient conditions for near-optimal controls were derived. This paper extends the results obtained by Zhou to a class of optimal control problems involving Volterra integral equations. The results are applied to study near-optimal controls obtained by the control parametrization method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号