首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding of K(+) to aspartic acid (Asp), glutamic acid (Glu), asparagine (Asn), and glutamine (Gln) is examined in detail by studying the collision-induced dissociation (CID) of the four potassium cation-bound amino acid complexes with Xe using a guided ion beam tandem mass spectrometer (GIBMS). Formed by electrospray ionization, these complexes have energy-dependent CID cross sections that are analyzed to provide 0 K bond energies after accounting for unimolecular decay rates, internal energy of reactant ions, and multiple ion-molecule collisions. Quantum chemical calculations for a number of geometric conformations of each K(+)(L) complex are determined at the B3LYP/6-311+G(d,p) level with single-point energies calculated at B3LYP, B3P86, and MP2(full) levels using a 6-311+G(2d,2p) basis set. Theoretical bond dissociation energies are in good agreement with the experimental values. This coordinated examination of both experimental work and quantum chemical calculations allows for a comprehensive understanding of the molecular interactions of K(+) with the Asx and Glx amino acids. K(+) binding affinities for the amide complexes are systematically stronger than those for the acid complexes by 9+/-1 kJ/mol, which is attributed to an inductive effect of the OH group in the carboxylic acid side chain. Additionally, the K(+) binding affinity for the longer-chain amino acids (Glx) is enhanced by 5+/-1 kJ/mol compared to the shorter-chain Asx because steric effects are reduced. Further, a detailed comparison between experimental and theoretical results reveals interesting differences in the binding of K(+) and Na(+) to these amino acids.  相似文献   

2.
The deamidation and dehydration products of Na+(L), where L = asparagine (Asn), glutamine (Gln), aspartic acid (Asp), and glutamic acid (Glu), are examined in detail utilizing collision-induced dissociation (CID) with Xe in a guided ion beam tandem mass spectrometer (GIBMS). Results establish that the Na+(L) complexes decompose upon formation in our dc discharge/flow tube ion source to form a bis-ligand complex, Na+(L-HX)(HX), composed of a sodium cation, the (L-HX) decomposition product, and HX, where HX = NH3 for the amides and H2O for the acids. Analysis of the energy-dependent CID cross sections for the Na+(L-HX)(HX) complexes provides unambiguous identification of the (L-HX) fragmentation products as 3-amino succinic anhydride (a-SA) for Asx and oxo-proline (O-Pro) for Glx. Furthermore, these experiments establish the 0 K sodium cation affinities for these five-membered ring decomposition products and the H2O and NH3 binding affinities of the Na+(a-SA) and Na+(O-Pro) complexes after accounting for unimolecular decay rates, the internal energy of reactant ions, and multiple ion-molecule collisions. Quantum chemical calculations are determined for a number of geometric conformations of all reaction species as well as a number of candidate species for (L-HX) at the B3LYP/6-311+G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. This coordinated examination of both the experimental work and quantum chemical calculations allows for a complete characterization of the products of deamidation and dehydration of Asx and Glx, as well as the details of Na+, H2O, and NH3 binding to the decomposition species.  相似文献   

3.
The binding of Na (+) to arabinose (Ara), xylose (Xyl), glucose (Glc), and galactose (Gal) is examined in detail by studying the collision-induced dissociation (CID) of the four sodiated monosaccharide complexes with Xe using a guided ion beam tandem mass spectrometer (GIBMS). Analysis of the energy-dependent CID cross-sections provides 0 K sodium cation affinities for experimental complexes after accounting for unimolecular decay rates, internal energy of reactant ions, and multiple ion-neutral collisions. Quantum chemical calculations for a number of geometric conformations of each Na (+)(L) complex with a comprehensive analysis of the alpha and beta anomeric forms are determined at the B3LYP/6-311+G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. This coordinated examination of both experimental work and quantum chemical calculations allows for determination of the bond energy for both the alpha and beta forms of each monosaccharide studied here. An understanding of the energetic contributions of individual structural characteristics as well as the energetic trends in binding among the monosaccharides is developed. Structural characteristics that affect the energetics of binding involve multidentate sodium cation coordination, ring sterics, and hydrogen bonding schemes. The overall trend in sodium binding affinities for the eight ligands follows beta-Ara < alpha-Ara < beta-Xyl < beta-Glc < alpha-Glc < alpha;-Xyl < alpha-Gal < beta-Gal.  相似文献   

4.
The absolute proton affinities of the nonprotein amino acids canavanine and canaline have been determined using the extended kinetic method in an electrospray ionization quadrupole ion trap instrument. Canavanine results from the substitution of an oxygen atom for the delta-CH2 group in the side chain of the protein amino acid arginine, whereas canaline results from a similar substitution at the delta-CH2 group in the side chain of ornithine. Absolute proton affinities of 1001+/-9 and 950+/-7 kJ/mol are obtained for canavanine and canaline, respectively. For canaline, this proton affinity is in excellent agreement with theoretical predictions obtained using the hybrid density functional theory method B3LYP/6-311++G**//B3LYP/6-31+G*. For canavanine, theory predicts a somewhat larger proton affinity of 1015 kJ/mol. Oxygen atom substitution in these nonprotein amino acids results in a decrease in their proton affinities of 40-50 kJ/mol compared to arginine and ornithine.  相似文献   

5.
A new version of the single-reference-extended kinetic method is presented in which direct entropy correction is incorporated. Results of calibration experiments with the monodentate base pyridine and the bidentate base ethylenediamine are presented for which the method provides proton affinities in excellent agreement with published values and reasonable predictions for the protonation entropies. The method is then used to determine the proton affinity and protonation entropy of the non-protein amino acid beta-oxalylaminoalanine (BOAA). The PA of BOAA is found to be 933.1 +/- 7.8 kJ/mol and a prediction for the protonation entropy of -39 J mol(-1) K(-1) is also obtained, indicating a significant degree of intramolecular hydrogen bonding in the protonated form. These results are supported by hybrid density functional theory calculations at the B3LYP/6-311++G**//B3LYP/6-31+G* level. They indicate that the preferred site of protonation is the alpha-nitrogen atom (PA = 935.0 kJ/mol) and that protonated BOAA has a strong hydrogen bond between the hydrogen on the alpha-amino group and one of the carbonyl oxygen atoms on the side chain.  相似文献   

6.
A systematic study of the binding affinities of the model biological ligands X: = (CH3)2S, CH3S-, CH3NH2, 4-CH3-imidazole (MeImid), C6H5O-, and CH3CO2- to (NH3)i(H2O)3-iCu(II)-H2O (i = 3, 2, 1, 0) complexes has been carried out using quantum chemical calculations. Geometries have been obtained at the B3LYP/ 6-31G(d) level of theory, and binding energies, Delta, relative to H2O as a ligand, have been calculated at the B3LYP/6-311+G(2df,2p)//B3LYP/6-31G(d) level. Solvation effects have been included using the COSMO model, and the relative binding free energies in aqueous solution (Delta) have been determined at pH 7 for processes that are pH dependent. CH3S- (Delta = -16.0 to -53.5 kJ mol(-1)) and MeImid (Delta = -18.5 to -35.2 kJ mol(-1)) give the largest binding affinities for Cu(II). PhO- and (CH3)2S are poor ligands for Cu(II), Delta = 20.6 to -9.7 and 19.8 to -3.7 kJ mol(-1), respectively. The binding affinities for CH3NH2 range from -0.8 to -15.0 kJ mol(-1). CH3CO2- has Cu(II) binding affinities in the ranges Delta = -13.5 to -32.4 kJ mol(-1) if an adjacent OH bond is available for hydrogen bonding and Delta = 10.1 to -4.6 kJ mol(-1) if this interaction is not present. In the context of copper coordination by the Abeta peptide of Alzheimer's disease, the binding affinities suggest preferential binding of Cu(II) to the three histidine residues plus a lysine or the N-terminus. For a 3N1O Cu(II) ligand arrangement, it is more probable that the oxygen ligand comes from an aspartate/glutamate residue side chain than from the tyrosine at position 10. Methionine appears unlikely to be a Cu(II) ligand in Abeta.  相似文献   

7.
Absolute bond dissociation energies of serine (Ser) and threonine (Thr) to alkali metal cations are determined experimentally by threshold collision-induced dissociation of M+AA complexes, where M+=Li+, Na+, and K+ and AA=Ser and Thr, with xenon in a guided ion beam tandem mass spectrometer. Experimental results show that the binding energies of both amino acids to the alkali metal cations are very similar to one another and follow the order of Li+>Na+>K+. Quantum chemical calculations at three different levels, B3LYP, B3P86, and MP2(full), using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d,p) level show good agreement with the experimental bond energies. Theoretical calculations show that all M+AA complexes have charge-solvated structures (nonzwitterionic) with [CO, N, O] tridentate coordination.  相似文献   

8.
Threshold collision-induced dissociation of Na(+)(xBA) complexes with Xe is studied using guided ion beam mass spectrometry. The xBA ligands studied include benzoic acid and all of the mono- and dihydroxy-substituted benzoic acids: 2-, 3-, and 4-hydroxybenzoic acid and 2,3-, 2,4-, 2,5-, 2,6-, 3,4-, and 3,5-dihydroxybenzoic acid. In all cases, the primary product corresponds to endothermic loss of the intact xBA ligand. The cross section thresholds are interpreted to yield 0 and 298 K bond dissociation energies (BDEs) for Na(+)-xBA after accounting for the effects of multiple ion-neutral collisions, internal and kinetic energy distributions of the reactants, and dissociation lifetimes. Density functional theory calculations at the B3LYP/6-31G* level of theory are used to determine the structures of these complexes and provide the molecular constants necessary for the thermodynamic analysis of the experimental data. Theoretical BDEs are determined at the B3LYP/6-311+G(2d,2p) and MP2(full)/6-311+G(2d,2p) levels using the B3LYP/6-31G* optimized geometries. The trends in the measured BDEs suggest two very different binding modes for the Na(+)(xBA) complexes, while theory finds four. In general, the most stable binding conformation involves the formation of a six-membered chelation ring via interaction with the carbonyl and 2-hydroxyl oxygen atoms. The ground state geometries of the Na(+)(xBA) complexes in which the ligand does not possess a 2-hydroxyl group generally involve binding of Na(+) to either the carbonyl oxygen atom or to both oxygen atoms of the carboxylic acid group. These binding modes tend to be competitive because the enhancement in binding associated with the chelation interactions in the latter is mediated by steric repulsion between the hydroxyl and ortho hydrogen atoms. When possible, hydrogen bonding interactions with the ring hydroxyl group(s) enhance the stability of these complexes. The agreement between the theoretical and experimental BDEs is quite good for B3LYP and somewhat less satisfactory for MP2(full).  相似文献   

9.
The interaction of the alkali metal cations, Li+, Na+, and K+, with the amino acid proline (Pro) and its four- and six-membered ring analogues, azetidine-2-carboxylic acid (Aze) and pipecolic acid (Pip), are examined in detail. Experimentally, threshold collision-induced dissociation of the M+(L) complexes, where M = Li, Na, and K and L = Pro, Aze, and Pip, with Xe are studied using a guided ion beam tandem mass spectrometer. From analysis of the kinetic energy dependent cross sections, M(+)-L bond dissociation energies are measured. These analyses account for unimolecular decay rates, internal energy of reactant ions, and multiple ion-molecule collisions. Ab initio calculations for a number of geometric conformations of the M+(L) complexes were determined at the B3LYP/6-311G(d,p) level with single-point energies calculated at MP2(full), B3LYP, and B3P86 levels using a 6-311+G(2d,2p) basis set. Theoretical bond energies show good agreement with the experimental bond energies, which establishes that the zwitterionic form of the alkali metal cation/amino acid, the lowest energy conformation, is formed in all cases. Despite the increased conformational mobility in the Pip systems, the Li+, Na+, and K+ complexes of Pro show higher binding energies. A meticulous examination of the zwitterionic structures of these complexes provides an explanation for the stability of the five-membered ring complexes.  相似文献   

10.
Threshold collision-induced dissociation techniques are employed to determine bond dissociation energies (BDEs) of mono- and bis-complexes of alkali metal cations, Li+, Na+, K+, Rb+, and Cs+, with indole, C8H7N. The primary and lowest energy dissociation pathway in all cases is endothermic loss of an intact indole ligand. Sequential loss of a second indole ligand is observed at elevated energies for the bis-complexes. Density functional theory calculations at the B3LYP/6-31G level of theory are used to determine the structures, vibrational frequencies, and rotational constants of these complexes. Theoretical BDEs are determined from single point energy calculations at the MP2(full)/6-311+G(2d,2p) level using the B3LYP/6-31G* geometries. The agreement between theory and experiment is very good for all complexes except Li+ (C8H7N), where theory underestimates the strength of the binding. The trends in the BDEs of these alkali metal cation-indole complexes are compared with the analogous benzene and naphthalene complexes to examine the influence of the extended pi network and heteroatom on the strength of the cation-pi interaction. The Na+ and K+ binding affinities of benzene, phenol, and indole are also compared to those of the aromatic amino acids, phenylalanine, tyrosine, and tryptophan to elucidate the factors that contribute to the binding in complexes to the aromatic amino acids. The nature of the binding and trends in the BDEs of cation-pi complexes between alkali metal cations and benzene, phenol, and indole are examined to help understand nature's preference for engaging tryptophan over phenylalanine and tyrosine in cation-pi interactions in biological systems.  相似文献   

11.
Absolute 18-crown-6 (18C6) binding affinities of four protonated acetylated amino acids (AcAAs) are determined using guided ion beam tandem mass spectrometry techniques. The AcAAs examined in this work include: N-terminal acetylated lysine (N???CAcLys), histidine (N???CAcHis), and arginine (N???CAcArg) as well as side chain acetylated lysine (N???CAcLys). The kinetic-energy-dependent cross sections for collision-induced dissociation (CID) of the (AcAA)H+(18C6) complexes are analyzed using an empirical threshold law to extract absolute 0 and 298?K (AcAA)H+?18C6 bond dissociation energies (BDEs) after accounting for the effects of multiple collisions, kinetic and internal energy distributions of the reactants, and unimolecular dissociation lifetimes. Theoretical electronic structure calculations are performed to determine stable geometries and energetics for neutral and protonated 18C6 and the AcAAs as well as the proton bound complexes of these species, (AcAA)H+(18C6), at the B3LYP/6-311+G(2d,2p)//B3LYP/6-31?G* and M06/6-311+G(2d,2p)//B3LYP/6-31G* levels of theory. For all four (AcAA)H+(18C6) complexes, loss of neutral 18C6 corresponds to the most favorable dissociation pathway. At elevated energies, products arising from sequential dissociation of the primary CID product, H+(AcAA), are also observed. Protonated N???CAcLys exhibits a greater 18C6 binding affinity than other protonated N???CAcAAs, suggesting that the side chains of Lys residues are the preferred binding sites for 18C6 complexation to peptides and proteins. N???CAcLys exhibits a greater 18C6 binding affinity than N???CAcLys, suggesting that binding of 18C6 to the side chain of Lys residues is more favorable than to the N-terminal amino group of Lys.  相似文献   

12.
Absolute bond dissociation energies (BDEs) of glycylglycine (GG) and glycylglycylglycine (GGG) to sodium and potassium cations and sequential bond energies of glycine (G) in Na+G2 were determined experimentally by threshold collision-induced dissociation (TCID) in a guided ion beam tandem mass spectrometer. Experimental results showed that the binding energies follow the order of Na+ > K+ and M+GGG > M+GG > M+G. Theoretical calculations at the B3LYP/6-311+G(d) level show that all complexes had charge-solvated structures (nonzwitterionic) with either [CO,CO] bidentate or [N,CO,CO] tridentate coordination for M+GG complexes, [CO,CO,CO] tridentate or [N,CO,CO,CO] tetradentate coordination for M+GGG complexes, and [N,CO,N,CO] tetradentate coordination for Na+G2. Ab initio calculations at three different levels of theory (B3LYP, B3P86, and MP2(full) using the 6-311+G(2d,2p) basis set with geometries and zero-point energies calculated at the B3LYP/6-311+G(d) level) show good agreement with the experimental bond energies. This study demonstrates for the first time that TCID measurements of absolute BDEs can be successfully extended to biological molecules as complex as a tripeptide.  相似文献   

13.
F原子与瞬态自由基CH_2SH反应的理论研究   总被引:1,自引:0,他引:1  
胡正发  冯霞  王振亚  周士康 《化学学报》2002,60(10):1760-1767
用量子化学从头算和密度泛函理论(DFT)对F原子与自由基CH_2SH在势能面上 的反应进行了研究。在B3LYP/6-311G水平上计算出了各物种的优化构型、振动频率 和零点振动能(ZPVE);各物种的总能量由B3LYP/6-311 + G(2df, pd)//B3LYP/6- 311G计算,另外对反应物和产物还计算了其G3能量。结果表明:首先F通过与C或S 结合的两种途径与CH_2SH相配位,再通过H(4)原子转移形成甲基,然后甲基再旋 转,甲基中H(4)原子最终与F结合,反应产物为HF和CH_2S。反应为放热反应,分 别为ΔH_r = -370.7 kJ/mol (DFT)和-396.94 kJ/mol (G3)。此外依据计算出的反 应热,可得自由基·CH_2SH的生成热Δ_fH°_(298.15) = 146.44 kJ/mol (DFT), 而Δ_fH°_0 = 167.36 kJ/mol (G3)。它们与以前的实验和理论值是一致的。  相似文献   

14.
The sodium ion affinities of cytosine (Cyt), 5-methylcytosine (5MeCyt) and 1-methylcytosine (1MeCyt) have been determined by experimental and quantum chemical methods. Na(+)-bound heterodimers were produced carrying one cytosine or methylated cytosine ligand (designated as C) and one peptide or amino acid reference base (designated as Pep); the Pep molecules included the peptides GlyLeu, GlyPhe, SerGly, and PheGly, and the amino acid His. The dissociation kinetics of these C--Na(+)--Pep ions were determined by collisionally activated dissociation (CAD) and converted to relative and absolute Na(+) affinities via kinetic method approaches. Relative Na(+) affinities increase in the order (kJ/mol): GlyLeu (0) < Cyt (3) < GlyPhe (4) < SerGly (6) < 5MeCyt (8) < PheGly (11) < 1MeCyt (13) < His (17). Anchoring the relative values of the nucleobases to the absolute affinities of the reference bases leads to absolute Na(+) affinities of 214 +/- 8, 219 +/- 8, and 224 +/- 8 kJ/mol for Cyt, 5MeCyt, and 1MeCyt, respectively. Ab initio calculations were used to confirm these results. The computed affinities of Cyt (213 kJ/mol) and 1MeCyt (217 kJ/mol) are in very good agreement with the experiments. These values unambiguously correspond to Na(+) complexes with the keto form of cytosine and its methyl derivatives. Ab initio calculations on tautomerization mechanisms in the gas versus condensed phase are used to discuss why the sodiated keto isomers were formed in the present electrospray ionization (ESI) experiments, but the enol isomers in previous fast atom bombardment (FAB) experiments.  相似文献   

15.
To develop a new solvent-impregnated resin system for the removal of phenols from water the complex formation of triisobutylphosphine sulfide (TIBPS), tributylphosphate (TBP), and tri-n-octylphosphine oxide (TOPO) with a series of phenols (phenol, thiophenol, 3-chlorophenol, 3,5-dichlorophenol, 4-cyanophenol, and pentachlorophenol) was studied. The investigation of complex formation between the extractants and the phenols in the solvent toluene was carried out using liquid-liquid extraction, isothermal titration calorimetry (ITC), and quantum chemical modeling (B3LYP/6-311+G(d,p)//B3LYP/6-311G(d,p) and MP2/6-311++G(2d,2p)//B3LYP/6-311G(d,p)). The equilibrium constant (binding affinity, Kchem), enthalpy of complex formation (DeltaH), and stoichiometry (N) were directly measured with ITC, and the entropy of complexation (DeltaS) was derived from these results. A first screening of K chem toward phenol revealed a very high binding affinity for TOPO, and very low binding affinities for the other extractants. Modeling results showed that although 1:1 complexes were formed, the TIBPS and TBP do not form strong hydrogen bonds. Therefore, in the remainder of the research only TOPO was considered. Kchem of TOPO for the phenols in toluene increased from 1,000 to 10,000 M(-1) in the order phenol < pentachlorophenol < 3-chlorophenol < 4-cyanophenol approximately 3,5-dichlorophenol (in line with their pKa values, except for pentachlorophenol) in the absence of water, while the stoichiometric ratio remained 1:1. In water-saturated toluene, the binding affinities are lower due to co-complexation of water with the active site of the extractant. The increase in binding affinity for TOPO in the phenol series was confirmed by a detailed ab initio study, in which Delta H was calculated to range from -10.7 kcal/mol for phenol to -13.4 kcal/mol for 4-cyanophenol. Pentachlorophenol was found to behave quite differently, showing a DeltaH value of -10.5 kcal/mol. In addition, these calculations confirm the formation of 1:1 H-bonded complexes.  相似文献   

16.
17.
In this study the theoretical Gaussian-2 K(+)/Na(+) binding affinities (enthalpies) at 0 K (in kJ mol(-1)) for six amides in the order: formamide (109.2/138.5) < N-methylformamide (117.7/148.6) < acetamide (118.7/149.5) < N,N-dimethylformamide (123.9/156.4) < N-methylacetamide (125.6/157.7) < N,N-dimethylacetamide (129.2/162.6), reported previously (Siu et al., J. Chem. Phys. 2001; 114: 7045-7051), were validated experimentally by mass spectrometric kinetic method measurements. By monitoring the collision-induced dissociation (CID) of K(+)/Na(+)-bound heterodimers of the amides, the relative affinities were shown to be accurate to within +/-2 kJ mol(-1). With these six theoretical K(+)/Na(+) binding affinities as reference values, the absolute K(+)/Na(+) affinities of imidazole, 1-methylimidazole, pyridazine and 1,2-dimethoxyethane were determined by the extended kinetic method, and found to be consistent (to within +/-9 kJ mol(-1)) with literature experimental values obtained by threshold-CID, equilibrium high-pressure mass spectrometry, and Fourier transform ion cyclotron resonance/ligand-exchange equilibrium methods. A self-consistent resolution is proposed for the inconsistencies in the relative order of K(+)/Na(+) affinities of amides reported in the literature. These two sets of validated K(+) and Na(+) affinity values are useful as reference values in kinetic method measurements of K(+)/Na(+) affinity of model biological ligands, such as the K(+) affinities of aliphatic amino acids.  相似文献   

18.
The potassium cation affinities (PCAs) of 136 ligands (20 classes) in the gas phase were established by hybrid density functional theory calculations (B3-LYP with the 6-311+G(3df,2p) basis set). For these 136 ligands, 70 experimental values are available for comparison. Except for five specific PCA values-those of phenylalanine, cytosine, guanine, adenine (kinetic-method measurement), and Me(2)SO (by high-pressure mass spectrometric equilibrium measurement)-our theoretical estimates and the experimental affinities are in excellent agreement (mean absolute deviation (MAD) of 4.5 kJ mol(-1)). Comparisons with previously reported theoretical PCAs are also made. The effect of substituents on the modes of binding and the PCAs of unsubstituted parent ligands are discussed. Linear relations between Li+/Na+ and K+ affinities suggest that for the wide range of ligands studied here, the nature of binding between the cations and a given ligand is similar, and this allows the estimation of PCAs from known Li+ and/or Na+ affinities. Furthermore, empirical equations relating the PCAs of ligands with their dipole moments, polarizabilities (or molecular weights), and the number of binding sites were established. Such equations offer a simple method for estimating the PCAs of ligands not included in the present study.  相似文献   

19.
The gas-phase basicity (GB) of tetra-tert-butyltetrahedrane (tBu4THD) was determined by FT-ICR mass spectrometry and comparison with reference compounds of known basicity. Its GB, 1035+/-10 kJ x mol(-1), makes tetra-tert-butyltetrahedrane one of the strongest bases reported so far. Ab initio calculations [B3LYP/6-31G(d) and B3LYP/6-311 + G(d,p)//6-31G(d)] have been carried out in order to compare the high experimental basicity of tBu4THD with that estimated theoretically. Both B3LYP/6-31G(d) and QCISD(T) calculations were used to determine the reaction path which connects the initial tetrahedrane-ammonium complex with the final products, protonated cyclobutadiene (CBDH+) and ammonia.  相似文献   

20.
The interactions of cesium cations with five amino acids (AA) including glycine (Gly), proline (Pro), serine (Ser), threonine (Thr), and cysteine (Cys) are examined in detail. Experimentally, the bond dissociation energies (BDEs) are determined using threshold collision-induced dissociation of the Cs(+)(AA) complexes with xenon in a guided ion beam tandem mass spectrometer. Analyses of the energy-dependent cross sections include consideration of unimolecular decay rates, internal energy of the reactant ions, and multiple ion-neutral collisions. Bond dissociation energies (0 K) of 93.3 ± 2.5, 107.9 ± 4.6, 102.3 ± 4.1, 105.4 ± 4.3, and 96.8 ± 4.2 kJ/mol are determined for complexes of Cs(+) with Gly, Pro, Ser, Thr, and Cys, respectively. Quantum chemical calculations are conducted at the B3LYP, B3P86, MP2(full), and M06 levels of theory with geometries and zero-point energies calculated at the B3LYP level using both HW*/6-311+G(2d,2p) and def2-TZVPPD basis sets. Results obtained using the former basis sets are systematically low compared to the experimental bond energies, whereas the latter basis sets show good agreement. For Cs(+)(Gly), theory predicts the ground-state conformer has the cesium cation binding to the carbonyl group of the carboxylic acid. For Cs(+)(Pro), the secondary nitrogen accepts the carboxylic acid hydrogen to form the zwitterionic structure, and the metal cation binds to both oxygens. Cs(+)(Ser), Cs(+)(Thr), and Cs(+)(Cys) are found to have tridentate binding at the MP2(full) level, whereas the density functional approaches slightly prefer bidentate binding of Cs(+) at the carboxylic acid moiety. Comparison of these results to those for the smaller alkali cations provides insight into the trends in binding affinities and structures associated with metal cation variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号