共查询到16条相似文献,搜索用时 109 毫秒
1.
以Nb2O5,K2CO3和CuO为原料经高温固相反应合成K4Nb6-xCuxO17催化剂,并通过层间离子交换反应,胺插入反应以及硫化反应制备CdS插层K4Nb6-xCuxO17复合催化剂(K4Nb6-xCuxO17/CdS)。利用X射线衍射(XRD),X射线光电子能谱(XPS),场发射扫描电镜(SEM),X射线能谱仪(EDX),紫外-可见漫反射(UV-Vis),分子荧光光谱(PL)等技术对催化剂进行表征。考察了催化剂的可见光催化制氢活性。结果表明,Cu离子掺杂进入K4Nb6O17晶格中,CdS位于K4Nb6O17层间。CdS插层K4Nb6-xCuxO17催化剂的最大吸收光波长约为550 nm。催化剂制氢活性有明显提高,紫外光和可见光下3 h产氢量分别达到279.83 mmol.gcat-1和7.11 mmol.gcat-1。最后讨论了复合催化剂光生电荷转移机理。 相似文献
2.
利用高温固相反应、离子交换、层间插入反应和硫化处理制备了PbS插层的K2Ti4O9催化剂。利用XRD、TEM、SEM、XRF、PL和紫外-可见漫反射光谱对催化剂进行了表征,考察了催化剂紫外光和可见光光催化制氢活性。结果表明,制备的PbS插层K2Ti4O9催化剂对可见光的吸收范围较宽,其吸收边界约为710 nm,在紫外光和可见光下3 h累积产氢量可达到115.46 mmol.gcat-1和0.92 mmol.gcat-1,与CdS插层K2Ti4O9催化剂相比具有更高的催化活性。 相似文献
3.
采用微波法离子交换制备了CdS插层K2Ti4O9催化剂, 利用XRD, BET, 紫外-可见漫反射光谱和XPS对催化剂进行了表征. 考察了催化剂在紫外光和模拟太阳光下的光催化活性, 并对其机理进行了分析. 研究表明, 采用微波法制备的催化剂与传统法制备的催化剂结构相似, 进而有效地减少离子交换反应时间. 微波法CdS插层K2Ti4O9催化剂在紫外光及模拟太阳光照射3 h的累积产氢量分别为161.6 和2.1 mmol/gcat, 是传统法制备的催化剂活性的1.7和2.7倍. 相似文献
4.
用高温固相法合成了具有类钙钛矿型结构的层状化合物K2La2Ti3O10, 用XRD, UV-DRS对其进行表征. 利用不同还原方法制备了Pt/K2La2Ti3O10光催化剂, 并且用脉冲氢氧滴定法(HOT)测定了K2La2Ti3O10表面Pt的分散度. 考察了Pt/K2La2Ti3O10光催化分解甲醇水溶液制氢的活性. 比较了负载Pt与负载Ni和纯的K2La2Ti3O10的光催化活性. 研究了Pt负载量、不同还原方法对光催化分解水制氢反应活性的影响. 在最佳的Pt负载量2%(质量百分比)下, 产氢速率达到233.88 mmol·h&;#8722;1. 讨论了该催化剂的能带结构及反应机理. 相似文献
5.
Cr掺杂对K2La2Ti3O10光催化活性的影响 总被引:1,自引:0,他引:1
通过溶胶-凝胶法制备了层状钙钛矿结构的K2La2Ti3O10及Cr掺杂的K2La2Ti3O10,采用X-射线衍射(XRD)、紫外可见漫反射光谱(DRS)、X射线光电子能谱(XPS)等对K2La2Ti3O10及Cr掺杂K2La2Ti3O10进行了表征。以I-为电子给体、分别在紫外和可见光辐射下研究了K2La2Ti3O10及Cr掺杂K2La2Ti3O10光催化分解水的产氢活性。采用第一性原理,计算了Cr掺杂对K2La2Ti3O10半导体能带结构和态密度的影响,从电子结构的变化揭示了掺杂引起光催化活性差异的原因。结果表明,Cr的掺入能够改善和提高K2La2Ti3O10的光解水的产氢活性;Cr改善和提高K2La2Ti3O10的光解水的产氢活性存在一个最佳的掺杂浓度;当Cr与Ti的物质量的比为0.02∶1时,紫外光催化分解水产氢速率为1 500 μmol·L-1·h-1,可见光催化分解水产氢速率为83.6 μmol·L-1·h-1,分别为K2La2Ti3O10掺杂改性前产氢速率的26和5倍。 相似文献
6.
以Ce(NO3)3·6H2O及Al(NO3)3·9H2O为原料,NH4HCO3为造孔剂,以沉淀法制备了具有介孔结构的CeO2/γ-Al2O3光催化材料。研究了不同NH4∶Al及Ce∶Al摩尔比等条件下制备CeO2/γ-Al2O3样品的光催化性能。结果表明,所制备CeO2/γ-Al2O3复合材料具有优异的光催化性能,最佳NH4∶Al及Ce∶Al摩尔比分别为1及0.2,该条件下制备的样品BET比表面积为94.4642 m2·g-1,孔径为5.8565 nm,对亚甲基蓝(MB)的光催化降解率可达93.59%,动力学常数k为0.0218 m... 相似文献
7.
采用静电纺丝技术制备的TiO2纤维作为模板和反应物,通过原位水热合成了具有异质结构的Bi2Ti2O7/TiO2复合纤维。利用X射线衍射(XRD)、扫描电镜(SEM)、能量散射光谱(EDS)、高分辨透射电镜(HRTEM)和紫外可见吸收光谱(UV-Vis)等分析测试手段对样品的结构和形貌进行表征。以罗丹明B为模拟有机污染物进行光催化降解实验。结果表明:花状Bi2Ti2O7纳米结构均匀地生长在TiO2纤维上,制备了Bi2Ti2O7与TiO2相复合的光催化材料,其光谱响应范围拓宽至可见光区,与纯TiO2纤维相比可见光催化活性显著提高,且易于分离、回收和循环使用。初步探讨了Bi2Ti2O7/TiO2异质结的生长机制和光催化活性提高机理。 相似文献
8.
《化学学报》2012,70(6)
采用微波辅助通过酸交换、胺柱撑、离子交换等步骤制备了CdS插层的K2La2Ti3010(ia做CdS-K2La2Ti3010)复合光催化剂.利用x射线粉末衍射(xgo),场发射扫描电子显微镜(SEM),紫外一可见漫反射吸收光谱(UV-Vis)和光致发光光谱(PL)等对产物进行表征,考察了CdS.KzLa2Ti3010在紫外光及可见光下催化制氢活性.结果表明,微波辅助法与传统法制备的插层复合催化剂晶型结构相似,同时大大减少了离子交换反应时间,减少了对层间结构的破坏,拓展了催化剂的可见光吸收范围.微波辅助制备的催化剂在紫外光和可见光照射3h后的产氢量分别为221.53mmol/(gcat.)和3.23mmol/(gcat.),并对光催化机理进行了分析. 相似文献
9.
采用高温固相法合成了铈掺杂的K2La2Ti3O10催化剂, 利用X射线衍射(XRD)、紫外-可见漫反射(UV-vis DRS)、透射电镜(TEM)和X射线光电子能谱(XPS)对催化剂进行了表征. 考察了催化剂的可见光催化分解甲醇水溶液制氢的活性, 并对可见光催化机理进行了分析. 研究表明, 铈的掺杂没有改变K2La2Ti3O10的微晶结构, 并使催化剂粒径有所减小. 紫外可见漫反射分析表明禁带宽度为2.3 eV左右, 对可见光具有较高吸收. XPS表明La和Ti为+3和+4价, 而Ce则是+3和+4的混合价态. 担载2 wt% Pt后, 在可见光下光催化活性大大提高, 当铈的掺杂量为0.5 mol%(即Ce取代La的摩尔百分量)时, 光催化活性达到最大, 产氢速率为0.05 mmol/h; 光照5 h后产氢量为0.22 mmol, 而纯K2La2Ti3O10的产氢量只有0.037 mmol. 相似文献
10.
以无水乙醇-甲酰胺的混合溶液为溶剂,在高压釜中利用氧化石墨与氯化镧于100℃反应制备了氧化镧/还原型氧化石墨复合材料(La2O3/RGO)。研究了反应时间和溶剂配比对产物的影响,通过XRD,SEM,IR,XPS对产品进行了表征。结果表明:氧化石墨被还原成还原型氧化石墨,氧化镧与还原氧化石墨存在化学键相互作用,复合材料中La-O共价键的强度比通常所见的La-O键强。当溶剂配比为2∶1(乙醇/甲酰胺),反应时间24 h时得到的复合材料对光催化过氧化氢氧化亚甲基蓝具有良好活性,脱色率达96.2%。 相似文献
11.
通过溶胶.凝胶法制备了层状钙钛矿结构的K2La2Ti3O10及硼族元素掺杂的K2La2Ti3O10,采用X-射线衍射(XRD)、紫外可见漫反射光谱(DRS)等对K2La2Ti3O10及硼族元素掺杂K2La2Ti3O10进行表征.以I-为电子给体、分别在紫外和可见光辐射下研究了K2La2Ti3O10及硼族元素掺杂K2La2Ti3O10光催化分解水的产氢活性;采用第一性原理,计算了硼族元素掺杂对K2La2Ti3O10半导体能带结构和态密度的影响.从电子结构的变化揭示了掺杂引起光催化活性差异的原因.研究结果表明,硼族元素的掺入能够改善和提高K2La2Ti3O10的光解水产氢活性;在B,Al,Ga,In与Ti的物质的量的比为0.01:1的情况下,K2La2Ti3O10紫外光催化分解水产氢速率分别为151.7、119.6、155和119.2 umol·L-1·h-1,比K2La2Ti3O10掺杂改性前产氢速率分别提高了166%、110%、172%和109%,可见光分解水的产氢速率为67.0、60.5、55.0和50.0umol·L-1·h-1,分别为K2La2Ti3O10掺杂改性前产氢速率的4、3.7、3.3和3倍. 相似文献
12.
采用溶胶-凝胶法制备了Fe3+掺杂的Fe-K2La2Ti3O10光催化剂, 并通过X射线衍射(XRD)、紫外-可见漫反射(DRS)、X射线光电子能谱(XPS)等技术对其进行了表征和分析, 考察了不同掺杂量对K2La2Ti3O10的性质及光催化分解水制氢活性的影响. 结果表明, Fe-K2La2Ti3O10在400-650 nm范围内显示强吸收, 光谱响应扩展到可见光区(λ>400 nm), 掺杂Fe3+后, K2La2Ti3O10的可见光区的光催化制氢活性显著提高, 掺杂量为nFe/nTi=0.04时活性最佳, 当催化剂用量为0.1 g, 反应液为CH3OH(30 mL)+H2O(90 mL)时, 产氢量达到1.92 μmol·h-1, 为未掺杂时的4倍. 相似文献
13.
可见光下Fe~(3+)掺杂对K2La2Ti3O(10)分解水制氢性能的影响 总被引:2,自引:0,他引:2
采用溶胶-凝胶法制备了Fe3+掺杂的Fe-K2La2Ti3O10.光催化剂,并通过X射线衍射(XRD)、紫外-可见漫反射(DRS)、X射线光电子能谱(XPS)等技术对其进行了表征和分析,考察了不同掺杂量对K2La2Ti3O10的性质及光催化分解水制氢活性的影响.结果表明,Fe-K2La2Ti3O10.在400-650 nm范围内显示强吸收,光谱响应扩展到可见光区(λ>400 nm),掺杂Fe3+后,K2La2Ti3O10.的可见光区的光催化制氢活性显著提高,掺杂量为nPe/nn=0.04时活性最佳,当催化剂用量为0.1 g,反应液为CH3OH(30 mL)+H2O(90 mL)时,产氢量达到1.92 μmol·h-1,为未掺杂时的4倍. 相似文献
14.
以TiO2、TiS2及Sm2O3为前驱体,分别加入LiCl-KCl与LiCl-CsCl的最低共熔混合物作为熔盐,在较低温度下成功合成了Sm2Ti2S2O5(STSO)颗粒。通过对比不同温度下所制备产物的X射线衍射图,首次表明STSO的热力学结晶温度在520℃左右,远低于之前报道的650℃的最低合成温度。扫描电子显微镜照片显示,采用2种混合熔盐制备的STSO都呈片状形貌;同一合成温度下,采用LiCl-CsCl熔盐制备的STSO的厚度小于LiCl-KCl所得产物。采用出射光波长大于420 nm的氙灯作为光源,在含有Na2S-Na2SO3空穴牺牲剂的溶液中,所制备的STSO颗粒表现出最高35μmol·h-1的光催化分解水产氢活性以及20 h以上的产氢稳定性。 相似文献
15.
利用微波法合成纳米尺寸Ag@AgBr表面敏化K2Ti4O9的复合光催化剂(Ag@AgBr/K2Ti4O9),并通过SEM、X-射线能量色散谱(EDX)、TEM、选定区域电子衍射(SAED)、XRD、紫外-可见漫反射(UV-VisDiffuseReflectance)、XPS等对其进行了表征,同时在可见光下测定催化剂对有机物降解的光催化活性。结果表明,粒径为0.2~0.5μm的Ag@AgBr均匀分散在K2Ti4O9表面,Ag@AgBr/K2Ti4O9对可见光有很好的吸收且Ag@AgBr的担载量影响可见光的吸收。当Ag@AgBr的担载量为25wt%时,复合光催化剂具有最高的光催化活性,光照1h对罗丹明B(RhB)的降解率可达97%。另外,催化剂的担载量和稳定性也做了考察。催化剂较高的光催化活性主要归因于Ag纳米粒子的表面等离子体效应和有效的光生电子-空穴的分离。 相似文献
16.
Cui Wenquan Liu Li Feng Liangrong Xu Chenghua Li Zijian Lü Shaojie Qiu Fali 《中国科学B辑(英文版)》2006,49(2):162-168
A layered perovskite-type oxide K2La2Ti3O10 was prepared with high-temperature solid-state reaction, and characterized with X-ray diffraction (XRD) and ultraviolet-visible
diffuse reflectance spectroscopy (UV-Vis DRS). Platinum was loaded onto K2La2Ti3O10 as a co-catalyst with different methods. The dispersion of platinum on K2La2Ti3O10 was determined with HOT method. The photocatalytic activity of Pt/K2La2Ti3O10 was studied. This catalyst showed much higher activity in hydrogen evolution reaction than Ni/K2La2Ti3O10. The effects of different amounts of loaded platinum and several preparation methods were evaluated. The best achieved hydrogen
evolution rate was 233.88 μmol·h−1 by Pt(2%)/K2La2Ti3O10. A possible band structure and mechanism were discussed based on the results. 相似文献