首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ahn YH  Ji ES  Shin PM  Kim KH  Kim YS  Ko JH  Yoo JS 《The Analyst》2012,137(3):691-703
A mass profiling method and multiple reaction monitoring (MRM)-based quantitative approach were used to analyze multiple lectin-captured fractions of human serum using different lectins such as aleuria aurantia lectin (AAL), phytohemagglutinin-L(4) (L-PHA), concanavalin A (Con A), and Datura stramonium agglutinin (DSA) to quantitatively monitor protein glycosylation diversity. Each fraction, prepared by multiple lectin-fractionation and tryptic digestion, was analyzed by 1-D LC-MS/MS. Semi-quantitative profiling showed that the list of glycoproteins identified from each lectin-captured fraction is significantly different according to the used lectin. Thus, it was confirmed that the multiplex lectin-channel monitoring (LCM) using multiple lectins is useful for investigating protein glycosylation diversity in a proteome sample. Based on the semi-quantitative mass profiling, target proteins showing lectin-specificity among each lectin-captured fraction were selected and analyzed by the MRM-based method in triplicate using each lectin-captured fraction (average CV 7.9%). The MRM-based analysis for each lectin-captured fraction was similar to those obtained by the profiling experiments. The abundance of each target protein measured varied dramatically, based on the lectin-specificity. The multiplex LCM approach using MRM-based analyses is useful for quantitatively monitoring target protein glycoforms selectively fractionated by multiple lectins. Thus through multiplex LCM rather than single, we could inquire minutely into protein glycosylation states.  相似文献   

2.
Protein glycosylation is important in many organisms for proper protein folding, signaling, cell adhesion, protein-protein interactions, and immune responses. Thus, effectively determining the extent of glycosylation in glycoprotein therapeutics is crucial. Up to now, characterizing protein glycosylation has been carried out mostly by liquid chromatography mass spectrometry (LC-MS), which requires careful sample processing, e.g., glycan removal or protein digestion and glycopeptide enrichment. Herein, we introduce an NMR-based method to better characterize intact glycoproteins in natural abundance. This non-destructive method relies on exploiting differences in nuclear relaxation to suppress the NMR signals of the protein while maintaining glycan signals. Using RNase B Man5 and RNase B Man9, we establish reference spectra that can be used to determine the different glycoforms present in heterogeneously glycosylated commercial RNase B.  相似文献   

3.
The serum clearance rate of therapeutic antibodies is important as it affects the clinical efficacy, required dose, and dose frequency. The glycosylation of antibodies has in some studies been shown to have an impact on the elimination rates in vivo. Monitoring changes to the glycan profiles in pharmacokinetics studies can reveal whether the clearance rates of the therapeutic antibodies depend on the different glycoforms, thereby providing useful information for improvement of the drugs. In this paper, a novel method for glycosylation analysis of therapeutic antibodies in serum samples is presented. A microfluidic compact-disc (CD) platform in combination with MALDI-MS was used to monitor changes to the glycosylation profiles of samples incubated in vitro. Antibodies were selectively purified from serum using immunoaffinity capture on immobilized target antigens. The glycans were enzymatically released, purified, and finally analyzed by MALDI-TOF-MS. To simulate changes to glycan profiles after administration in vivo, a therapeutic antibody was incubated in serum with the enzyme α1-2,3 mannosidase to artificially reduce the amount of the high mannose glycoforms. Glycan profiles were monitored at specific intervals during the incubation. The relative abundance of the high mannose 5 glycoform was clearly found to decrease and, simultaneously, that of high mannose 4 increased over the incubation period. The method can be performed in a rapid, parallel, and automated fashion for glycosylation profiling consuming low amounts of samples and reagents. This can contribute to less labor work and reduced cost of the studies of therapeutic antibodies glycosylation in vitro and in vivo.
Figure
?  相似文献   

4.
Detecting specific protein glycoforms is attracting particular attention due to its potential to improve the performance of current cancer biomarkers. Although natural receptors such as lectins and antibodies have served as powerful tools for the detection of protein-bound glycans, the development of effective receptors able to integrate in the recognition both the glycan and peptide moieties is still challenging. Here we report a method for selecting aptamers toward the glycosylation site of a protein. It allows identification of an aptamer that binds with nM affinity to prostate-specific antigen, discriminating it from proteins with a similar glycosylation pattern. We also computationally predict the structure of the selected aptamer and characterize its complex with the glycoprotein by docking and molecular dynamics calculations, further supporting the binary recognition event. This study opens a new route for the identification of aptamers for the binary recognition of glycoproteins, useful for diagnostic and therapeutic applications.

Binary recognition of the glycoprotein prostate specific antigen by aptamers: a tool for detecting aberrant glycosylation associated with cancer.  相似文献   

5.
Protein glycosylation can impact the efficacy, safety, and pharmacokinetics of therapeutic proteins. Achieving uniform and consistent protein glycosylation is an important requirement for product quality control at all stages of therapeutic protein drug discovery and development. The development of a new microfluidic CE device compatible with MS offers a fast and sensitive orthogonal mode of high-resolution separation with MS characterization. Here, we describe a fast and robust chip-based CE-MS method for intact glycosylation fingerprinting of a therapeutic fusion protein with complex sialylated N and O-linked glycoforms. The method effectively separates multiple sialylated glycoforms and offers a rapid detection of changes in glycosylation profile in 6 min.  相似文献   

6.
α-Ketoglutaric acid (α-KG) and 5-hydroxymethylfurfural (5-HMF) are currently under investigation as promising cancer cell damaging agents. A method for the simultaneous quantitative determination of α-KG and 5-HMF in human plasma was established for screening these compounds in human plasma. Plasma samples were directly treated with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride to form the corresponding oximes, thus facilitating subsequent liquid–liquid extraction. After formation of the trimethylsilyl ethers, samples were analyzed by gas chromatography with electron ionization mass spectrometry. Stable isotope labeled standards were used, the preparation of 13C6-5-HMF is described. Limits of quantitation were set to 0.938 μg/mL for α-KG and 0.156 μg/mL for 5-HMF. Inter-day accuracy was ≤93.7% (α-KG) and ≤92.8% (5-HMF). Inter-day precision was ≤6.0% (α-KG) and ≤4.6% (5-HMF). The method has been successfully applied to pharmacokinetic profiling of the compounds after intravenous application.  相似文献   

7.
Monoclonal antibodies are typically glycosylated at asparagine residues in the Fc domain, and glycosylation heterogeneity at the Fc sites is well known. This paper presents a method for rapid analysis of glycosylation profile of the therapeutic monoclonal antibody trastuzumab from different production batches using electrospray quadrupole ion-mobility time-of-flight mass spectrometry (ESI-Q-IM-TOF). The global glycosylation profile for each production batch was obtained by a fast LC-MS analysis, and comparisons of the glycoprofiles of trastuzumab from different lots were made based on the deconvoluted intact mass spectra. Furthermore, the heterogeneity at each glycosylation site was characterized at the reduced antibody level and at the isolated glycopeptide level. The glycosylation site and glycan structures were confirmed by performing a time-aligned-parallel fragmentation approach using the unique dual-collision cell design of the instrument and the incorporated ion-mobility separation function. Four different production batches of trastuzumab were analyzed and compared in terms of global glycosylation profiles as well as the heterogeneity at each glycosylation site. The results show that each batch of trastuzumab shares the same types of glycoforms but relative abundance of each glycoforms is varied.  相似文献   

8.
采用质谱法对4种高密度脂蛋白(HDL)的结合蛋白重组人载脂蛋白血清淀粉样蛋白A(SAA)、 α1-抗胰蛋白酶(A1AT)、 α2-人体血清糖蛋白(A2HSG)和A载脂蛋白C3(Apo C3)从蛋白质含量(蛋白的绝对定量)、 位点特异性糖基化(糖肽的相对定量)及聚糖位点占有率等方面进行了研究. 利用四极杆-飞行时间质谱仪(Q-TOF)测量糖蛋白标样酶解产物的二级质谱碎片离子, 用Byonic软件发现了新的糖基化位点信息, 即增加了原位点处聚糖糖型的种类. 对于A2HSG, 新增了N-糖基化156位点上的4种糖型, N-糖基化176位点上的6种糖型, O-糖基化319位点的4种O-聚糖和O-糖基化346位点上的1种糖型. 对于Apo C3, 只有O-糖基化94一个位点, 在此位点上新增了9种糖型. 同时, 调整了用于定量蛋白的多肽, 使得定量更加准确. 采用三重四极杆串级质谱仪(UPLC-ESI-QQQ)研究了4种结合蛋白中多肽和糖肽的多反应监测(MRM)行为, 并重新计算了每种聚糖的位点占有率, 优化了现有的定量方法.  相似文献   

9.
High‐resolution capillary zone electrophoresis is used to distinguish transferrin glycoforms present in human serum, cerebrospinal fluid, and serum treated with neuraminidase and N‐glycosidase F. The obtained data are compared to mass spectrometry data from the literature. The main focus is on the analysis of the various asialo‐transferrin, monosialo‐transferrin, and disialo‐transferrin molecules found in these samples. The features of capillary zone electrophoresis and mass spectrometry are reviewed and highlighted in the context of the analysis of undersialylated and hypoglycosylated transferrin molecules. High‐resolution capillary zone electrophoresis represents an effective tool to assess the diversity of transferrin patterns whereas mass spectrometry is the method of choice to elucidate structural identification about the glycoforms. Hypoglycosylated transferrin glycoforms present in sera of alcohol abusers and normal subjects are structurally identical to those in sera of patients with a congenital disorder of glycosylation type I. Asialo‐transferrin, monosialo‐transferrin and disialo‐transferrin observed in sera of patients with a type II congenital disorder of glycosylation or a hemolytic uremic syndrome, in cerebrospinal fluid and after treatment of serum with neuraminidase are undersialylated transferrin glycoforms with two N‐glycans of varying structure. Undersialylated disialo‐transferrin is also observed in sera with high levels of trisialo‐transferrin.  相似文献   

10.
Glycosylated proteins often show a large variation in their glycosylation pattern, complicating their structural characterization. In this paper, we present a method for the accurate mass determination of intact isomeric glycoproteins based on capillary electrophoresis-electrospray-time of flight-mass spectrometry. Human recombinant erythropoietin has been chosen as a showcase. The approach enables the on-line removal of nonglycosylated proteins, salts, and neutral and negatively charged species. More important, different glycosylation forms are separated both on the base of differences in the number of negatively charged sialic acid residues and the size of the glycans. Thus, 44 glycoforms and in total about 135 isoforms of recombinant human erythropoietin, taking also acetylation into account, could be distinguished for the reference material from the European Pharmacopeia. Distinct glycosylation differences for samples from different suppliers are clearly observed. Based on the accurate mass an overall composition of each single isoform is proposed, perfectly in agreement with data on glycan and glycopeptide analysis. This method is an ideal complement to the established techniques for glycopeptide and glycan analysis, not differentiating branching or linkage isoforms, but leading to an overall composition of the glycoprotein. The presented strategy is expected to improve significantly the ability to characterize and quantify isomeric glycoforms for a large variety of glycoproteins.  相似文献   

11.
This work develops a site‐specific duplexed luminescence resonance energy transfer system on cell surface for simultaneous imaging of two kinds of monosaccharides on a specific protein by single near‐infrared excitation. The single excitation‐duplexed imaging system utilizes aptamer modified upconversion luminescent nanoparticles as an energy donor to target the protein, and two fluorescent dye acceptors to tag two kinds of cell surface monosaccharides by a dual metabolic labeling technique. Upon excitation at 980 nm, only the dyes linked to protein‐specific glycans can be lit up by the donor by two parallel energy transfer processes, for in situ duplexed imaging of glycoforms on specific protein. Using MUC1 as the model, this strategy can visualize distinct glycoforms of MUC1 on various cell types and quantitatively track terminal monosaccharide pattern. This approach provides a versatile platform for profiling protein‐specific glycoforms, thus contributing to the study of the regulation mechanisms of protein functions by glycosylation.  相似文献   

12.
This study describes the characterization of the glycan moieties and the peptide backbone of six glycoforms of IB-8a CON1(+), a basic proline-rich protein present in human saliva. MS analyses on the intact glycoproteins before and after N-deglycosylation with PNGase F and high-resolution MS/MS sequencing by LTQ Orbitrap XL of peptides and glycopeptides from tryptic digests allowed the structural characterization of the glycan moieties and the polypeptide backbone, as well as to establish the glycosylation site at the asparagine residue at 98th position. Five of the glycoforms carry a biantennary N-linked glycan fucosylated in the innermost N-acetylglucosamine of the core and showing from zero to four additional fucoses in the antennal region. The sixth glycoform carries a monoantennary monofucosylated oligosaccharide. The glycoform cluster was detected on 28 of 71 adult saliva specimens. Level of fucosylation showed interindividual variability with the major relative abundance for the trifucosylated glycoform. Nonglycosylated IB-8a CON1(+) and the variant IB-8a CON1(-), lacking of the glycosylation site, have been also detected in human saliva.  相似文献   

13.
A spectroscopic method based on attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy has been developed for reagent-free analysis of blood and urine constituents in the clinical laboratory and for point-of-care-applications. Blood plasma, whole blood, and urine were analyzed without any sample preparation, such as drying, concentration, or enrichment. Sample volumes as small as 5 μL (a single drop of blood) can be used. Mathematical models, including partial least-squares regression, were used to construct a prediction model which can calculate the concentration of albumin, cholesterol, glucose, total protein, urea, and triglycerides in whole blood or blood plasma samples and the concentration of urea, uric acid, phosphate and creatinine in urine samples. The absolute precision and reproducibility of the prediction reached is sufficient for routine clinical analysis and is only limited by the precision of the reference analysis used for calibration. This was achieved by use of a large number of calibration samples (approx. 400 for blood samples and approx. 100 for urine samples) carefully selected for physiological and pathological range and for specific disease profiles.  相似文献   

14.
We describe a new method of assessing, in a single run, 13C isotopic enrichment of both Val and Thr by gas chromatography–combustion–isotope-ratio mass spectrometry (GC–C–IRMS). This method characterised by a rapid one-step derivatisation procedure performed at room temperature to form the N(O,S)-ethoxycarbonyl ethyl ester derivatives, and a polar column for GC. The suitability of this method for Val and Thr in in-vivo samples (mucosal hydrolysate) was demonstrated by studying protein metabolism with two tracers (13C-valine or 13C-threonine). The intra-day and inter-day repeatability were both assessed either with standards or with in-vivo samples at natural abundance and at low 13C isotopic enrichment. For inter-day repeatability CVs were between 0.8 and 1.5% at natural abundance and lower than 5.5% at 0.112 and 0.190 atom% enrichment for Val and Thr, respectively. Overall isotopic precision was studied for eleven standard amino acid derivatives (those of Val, Ala, Leu, Iso, Gly, Pro, Asp, Thr, Ser, Met, and Phe) and was assessed at 0.32‰. The 13C isotopic measurement was then extended to the other amino acids (Ala, Val, Leu, Iso, Gly, Pro, Thr, and Phe) at natural abundance for in-vivo samples. The isotopic precision was better than 0.002 atom% per amino acid (for n = 4 rats). This analytical method was finally applied to an animal study to measure Thr utilization in protein synthesis.  相似文献   

15.
BACKGROUND: A natural glycoprotein usually exists as a spectrum of glycosylated forms, where each protein molecule may be associated with an array of oligosaccharide structures. The overall range of glycoforms can have a variety of different biophysical and biochemical properties, although details of structure-function relationships are poorly understood, because of the microheterogeneity of biological samples. Hence, there is clearly a need for synthetic methods that give access to natural and unnatural homogeneously glycosylated proteins. The synthesis of novel glycoproteins through the selective reaction of glycosyl iodoacetamides with the thiol groups of cysteine residues, placed by site-directed mutagenesis at desired glycosylation sites has been developed. This provides a general method for the synthesis of homogeneously glycosylated proteins that carry saccharide side chains at natural or unnatural glycosylation sites. Here, we have shown that the approach can be applied to the glycoprotein hormone erythropoietin, an important therapeutic glycoprotein with three sites of N-glycosylation that are essential for in vivo biological activity. RESULTS: Wild-type recombinant erythropoietin and three mutants in which glycosylation site asparagine residues had been changed to cysteines (His(10)-WThEPO, His(10)-Asn24Cys, His(10)-Asn38Cys, His(10)-Asn83CyshEPO) were overexpressed and purified in yields of 13 mg l(-1) from Escherichia coli. Chemical glycosylation with glycosyl-beta-N-iodoacetamides could be monitored by electrospray MS. Both in the wild-type and in the mutant proteins, the potential side reaction of the other four cysteine residues (all involved in disulfide bonds) were not observed. Yield of glycosylation was generally about 50% and purification of glycosylated protein from non-glycosylated protein was readily carried out using lectin affinity chromatography. Dynamic light scattering analysis of the purified glycoproteins suggested that the glycoforms produced were monomeric and folded identically to the wild-type protein. CONCLUSIONS: Erythropoietin expressed in E. coli bearing specific Asn-->Cys mutations at natural glycosylation sites can be glycosylated using beta-N-glycosyl iodoacetamides even in the presence of two disulfide bonds. The findings provide the basis for further elaboration of the glycan structures and development of this general methodology for the synthesis of semi-synthetic glycoproteins.  相似文献   

16.
Glycosylation of recombinant human erythropoietin (rhEPO) is a post-translational process which depends on the type of cell in which rhEPO is synthesized, but also on the cell culture conditions and the final purification steps. These glycosylation modifications alter the biological activity, solubility and lifetime of rhEPO in blood. Thus, a rapid and simple method for the elucidation of the carbohydrate microheterogeneity of rhEPO is needed in order to evaluate a certain manufacturing process or assure the quality of the final product. Based on a recently developed method [1], the accurate mass determination of the intact glycoforms from two types of commercial rhEPO (epoetin-α and epoetin-β) by capillary electrophoresis-electrospray-time of flight-mass spectrometry is presented. The sample treatment consists of a fast and simple preconcentration step of the ready-to-use drug achieved by a centrifugal filter device. Characterization of the carbohydrate composition of each single glycoform is performed, in agreement with the results in glycan and glycopeptide analysis reported by other authors. The main differences between the carbohydrate structures of both epoetins are shown: the existence of two additional basic sialic acid isoforms for epoetin-β and the higher degree of acetylation for epoetin-α. The agreement of the main glycoforms for both epoetins is shown by molecular mass agreement. The high accuracy and reproducibility of the mass measurements with a standard deviation below 1 Da is proved by repeated analysis of European Pharmacopoeia rhEPO. Summarizing, the presented method enables the fast and reliable characterization of intact rhEPO in pharmaceutical products.Presented at: CE in the Biotechnology & Pharmaceutical Industries: 7th Symposium on the Practical Applications for the Analysis of Proteins, Nucleotides and Small Molecules, Montreal, Canada, August 12–16, 2005  相似文献   

17.
The analysis of monoclonal antibodies glycosylation is a crucial quality control attribute of biopharmaceutical drugs. High throughput screening approaches for antibody glycoform analysis are required in various stages of process optimization. Here, we present high throughput screening suitable mass spectrometry-based workflows for the analysis of intact antibody glycosylation out of cell supernatants. Capillary electrophoresis and liquid chromatography were coupled with quadrupole time-of-flight mass spectrometry or Orbitrap mass spectrometry. Both separation methods offer fast separation (10–15 min) and the capability to prevent the separated cell supernatant matrix to enter the mass spectrometry by post-separation valving. Both mass spectrometry instruments provide comparable results and both are sufficient to determine the glycosylation pattern of the five major glycoforms of the measured antibodies. However, the Orbitrap yields higher sensitivity of 25 μg/mL (CE-nanoCEasy-Orbitrap mass spectrometry) and 5 μg/mL (liquid chromatography-Orbitrap mass spectrometry). Data processing was optimized for a faster processing and easier detection of low abundant glycoforms based on averaged charge-deconvoluted mass spectra. This approach combines a non-target glycoform analysis while yielding the same glycosylation pattern as the traditional approach based on extracted ion traces. The presented methods enable the high throughput screening of the glycosylation pattern of antibodies down to low μg/mL-range out of cell supernatant without any sample preparation.  相似文献   

18.
Protein glycosylation is involved in a broad range of biological processes that regulate protein function and control cell fate. As aberrant glycosylation has been found to be implicated in numerous diseases, the study and large-scale characterization of protein glycosylation is of great interest not only to the biological and biomedical research community, but also to the pharmaceutical and biotechnology industry. Due to the complex chemical structure and differing chemical properties of the protein/peptide and glycan moieties, the analysis and structural characterization of glycoproteins has been proven to be a difficult task. Large-scale endeavors have been further limited by the dynamic outcome of the glycosylation process itself, and, occasionally, by the low abundance of glycoproteins in biological samples. Recent advances in MS instrumentation and progress in miniaturized technologies for sample handling, enrichment and separation, have resulted in robust and compelling analysis strategies that effectively address the challenges of the glycoproteome. This review summarizes the key steps that are involved in the development of efficient glycoproteomic analysis methods, and the latest innovations that led to successful strategies for the characterization of glycoproteins and their corresponding glycans. As a follow-up to this work, we review innovative capillary and microfluidic-MS workflows for the identification, sequencing and characterization of glycoconjugates.  相似文献   

19.
Ultrasonic slurry sampling electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry (USS–ETV–DRC–ICP–MS) for the determination of Cr, Cd and Pb in several plastic samples, using NH4NO3 as the modifier, is described. The influences of the instrumental operating conditions and the slurry preparation technique on the ion signals are investigated. A reduction in the intensity of the background at signals corresponding to chromium masses (arising from matrix elements) was achieved by using NH3 as the reaction cell gas in the DRC. The method was applied to determine Cr, Cd and Pb in two polystyrene (PS) samples and a polyvinyl chloride (PVC) sample using two different calibration methods, namely standard addition and isotope dilution. The results were in good agreement with those for digested samples analyzed by ultrasonic nebulization DRC–ICP–MS. The precision between sample replicates was better than 17% with the USS–ETV–DRC–ICP–MS method. The method detection limits, estimated from standard addition curves, were about 6–9, 1–2 and 8–11 ng g−1 for Cr, Cd and Pb, respectively, in the original plastic samples.  相似文献   

20.
蛋白质的N-糖基化修饰与多种重要的生理、病理进程密切相关,是多种重大疾病诊断标志物研究的热点。由于糖蛋白本身多是低丰度表达的蛋白质,且糖链结构具有高度微不均一性,这使得蛋白质糖基化修饰的分析具有一定的挑战。本研究利用表面引发-原子转移自由基聚合(SI-ATRP)法,以带有双键的氨基葡萄糖为单体(GMAG),成功制备了新型核壳型亲水聚合物-硅胶杂化填料(pGMAG-SiO2)。由于在硅胶表面引入致密的亲水聚合物层,该填料不仅保持了硅胶良好的机械强度,而且显著提高了其亲水性,因此非常适合作为亲水填料用于蛋白质的N-糖链富集。以麦芽七糖和鸡卵清蛋白的N-糖链为研究对象,考察了该填料对N-糖链的富集效果,并将该杂化填料成功用于人血浆中糖蛋白N-糖链的富集检测,共鉴定了47种糖型。以上结果表明,pGMAG-SiO2填料对N-糖链具有较高的亲和性,可以用于N-糖链的高覆盖率鉴定。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号