首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Sn4.4Mo24O38     
The single‐crystal structure of tetratin tetracosa­molybdenum octatriaconta­oxide, Sn4.4Mo24O38, contains infinite chains of centrosymmetric dioctahedral Mo10 and centrosymmetric trioctahedral Mo14 clusters. These clusters, as well as the O atoms, the arrangement of which derives from a closest‐packing with the layer sequence …ABAC…, form sheets parallel to the ac plane of the monoclinic unit cell. The Mo—Mo distances range from 2.6225 (7) to 2.8212 (9) Å and from 2.6270 (7) to 2.8365 (7) Å in the Mo10 and Mo14 clusters, respectively. The Mo—O distances vary between 1.949 (4) and 2.151 (4) Å in the Mo10 cluster and between 1.938 (4) and 2.140 (4) Å in the Mo14 cluster. The three crystallographically independent Sn2+ ions are off the centre of distorted oxy­gen octahedra.  相似文献   

2.
From the reduction of heptamolybdate, a polyoxomolybdate was obtained with the formula [Na(H2O)16(NH2CH2­COO)]4+·{Na+[H9MoMoO56(NH2CH2COO)]5?}4?­·20H2O, i.e. hepta­sodium nona­hydrogen tetra­car­bam­ate hexa­deca­aqua­hexa­penta­conta­oxa­octa­deca­molyb­date(V,VI) icosa­hydrate. The 18 Mo atoms are connected by bridging O atoms to form a centrosymmetric girdle‐like structure, in which MoV–MoV units are found. An Na+ cation occupies the central hole of the girdle, while four Na+ cations are bonded to the O atoms on the girdle edge. The girdles are linked into a one‐dimensional chain by the other Na+ cations.  相似文献   

3.
The new ternary antimonide Ti5.42(2)Mo2.58Sb9 was uncovered by a reaction of the elements under exclusion of air at 1150 °C. It crystallizes in a ternary substitution variant of the V7.5Sb9 type, a structure not known to exist in either the Ti/Sb or the Mo/Sb system. The crystal structure of Ti5.42Mo2.58Sb9 was determined from single crystal X‐ray data: space group P4/nmm, with a = 9.8178(8) Å, c = 7.1857(8) Å, V = 692.6(1) Å3, Z = 2, R1 = 0.025, wR2 = 0.052 (all data). The structure contains four metal atom sites, two thereof occupied solely by Ti atoms, and two by different Ti/Mo mixtures. The former two correspond to the Zr sites, and the latter two to the V sites of the isostructural antimonide Zr2V6Sb9. The crystal structure is comprised of chains of face‐sharing TiSb8 square antiprisms, Ti/Mo tetrahedra and Sb atom pairs and squares. The electronic structure, computed with the LMTO approximation, is indicative of metallic properties. In addition to the dominating metal–Sb bonds, strong metal–metal and Sb–Sb bonds exist as well in Ti5.42Mo2.58Sb9. The Mo content per metal site increases with increasing metal–metal interactions.  相似文献   

4.
Adsorption of N2 on Mo6S8q_Vx clusters (x=0, 1, 2; q=0, ±1) were systematically studied by density functional theory calculations with dispersion corrections. It was found that the N2 can be chemisorbed and undergo non-dissociative activation on single or double metal atoms. The adsorption and activation are influenced by metal types (V or Mo), N2 coordination modes and charge states of the clusters. Particularly, anionic Mo6S8_V2 clusters have remarkable ability to fix and activate N2. In Mo6S8_V2, two V atoms prefer to adsorb on two adjacent S−Mo−S hollow sites, leading to the formation of a supported V…V unit. The N2 is bridged side-on coordinated with these two V atoms with high adsorption energy and significant charge transfer. The bond order, bond length and vibration frequency of the adsorbed N2 are close to those of a N−N single bond.  相似文献   

5.
The crystal structure of dicaesium pentadecamolybdenum nonadeca­sulfide, Cs2Mo15S19, consists of a mixture of Mo6S8S6 and Mo9S11S6 cluster units in a 1:1 ratio. Both units are interconnected via inter‐unit Mo—S bonds. The Cs+ cations occupy large voids between the different cluster units. The Cs and two inner S atoms lie on sites with 3 symmetry (Wyckoff site 12c) and the Mo and S atoms of the median plane of the Mo9S11S6 cluster unit on sites with 2 symmetry (Wyckoff site 18e).  相似文献   

6.
The crystal structures of dirubidium hepta­oxodimolybdate, Rb2Mo2O7, and dicaesium hepta­oxodimolybdate, Cs2Mo2O7, in the space groups Ama2 and P21/c, respectively, have been determined for the first time by single‐crystal X‐ray diffraction. The structures represent two novel structure types of monovalent ion dimolybdates, A2Mo2O7 (A = alkaline elements, NH4, Ag or Tl). In the structure of Rb2Mo2O7, Mo atoms are on a twofold axis, on a mirror plane and in a general position. One of the Rb atoms lies on a twofold axis, while three others are on mirror planes. Two O atoms attached to the Mo atom on a mirror plane are located on the same plane. Rubidium dimolybdate contains a new kind of infinite Mo–O chain formed from linked MoO4 tetra­hedra and MoO6 octa­hedra alternating along the a axis, with two terminal MoO4 tetra­hedra sharing corners with each octa­hedron. The chains stack in the [001] direction to form channels of an approximately square section filled by ten‐coordinate Rb ions. Seven‐ and eight‐coordinate Rb atoms are located between chains connected by a c translation. In the structure of Cs2Mo2O7, all atoms are in general positions. The MoO6 octa­hedra share opposite corners to form separate infinite chains running along the c axis and strengthened by bridging MoO4 tetra­hedra. The same Mo–O polyhedral chain occurs in the structure of Na2Mo2O7. Eight‐ to eleven‐coordinate Cs atoms fill the space between the chains. The atomic arrangement of caesium dimolybdate has an ortho­rhom­bic pseudosymmetry that suggests a possible phase transition P21/cPbca at elevated temperatures.  相似文献   

7.
Synthesis and Structure of Mo2NCl7 The reaction of VN with MoCl5 at 175 °C in a sealed glass ampoule yields the molybdenum(V) nitride chloride Mo2NCl7 in form of air sensitive black crystals with the triclinic space group P1¯ and a = 905.7(8); b = 975.4((6); c = 1283.4(8) pm, α = 103.13(4)°; β = 109.83(5)° und γ = 98.58(5)°. The crystal structure is built up from dinuclear units [Mo2N2Cl7]3— and [Mo2Cl7]3+, which are connected by asymmetric nitrido bridges to form endless chains. Within both dinuclear units the Mo atoms are bridged by three Cl atoms resulting in a Mo‐Mo distance of 349.2(3) pm in the unit [Mo2N2Cl7]3—. In case of [Mo2Cl7]3+, however, a shorter Mo‐Mo distance of 289.4(3) pm is observed, which can be interpreted by a single bond. Correspondingly a reduced magnetic moment of 0.95 B.M. per Mo atom is observed.  相似文献   

8.
The title compound was prepared by the reaction of Mo_3S_4(dtp)_4(H_2O)[ctp=S_2P(OEt)_2]with NaOAc·3H_2O and C_4H_8NCS_2NH_4.Crystallographic data:[Mo_3(μ_3-S)(μ-S)_2(μ-OAc)-(S_2CNC_4H_8)_3(O)_2]·0.5CH_2CI_2·2H_2O,Mr=980.18,triclinic,space group P,α=12.360(3),b=16.653(6),c=9.206(2)A,α=101.97(2),β=108.32(2),γ=86.14(3)°.V=1759.6(9)A~3,Z=2,Dc=1.85 g/cm~3,F(000)=962,μ(Mo K_α)=16.53 cm~(-1).Final R=0.044 for 4301 reflections with I≥3σ(I).This compoundmay be regarded as a mixed-valent trinuclear molybdenum cluster{Mo_2(V)Mo(Ⅳ)(μ_3-S)(μ-S)_2-(μ-OAc)(S_2CNC_4H_8)_3(O)_2}.The Mo-Mo distances are 2.783(1),2.833(1)and 3.374(2)A in the Mo_3non-equilateral triangle and there exist only two Mo-Mo bonds.The cluster was obtained by oxi-dation and ligand substitution of{Mo_3(μ_3-S)(μ-S)_3[μ-S_2P(OEt_2)][S_2P(OEt)_2]_3(H_2O)}.  相似文献   

9.
The crystal structure of La5Mo6O21 (penta­lanthanum hexa­molybdenum henicosa­oxide) is made up of Mo3O13 units containing triangular {MoIV}3 clusters, three distorted MoVO6 octa­hedral units and six inter­stitial LaIII atoms. The Mo3O13 unit consists of three edge‐sharing MoIVO6 units involving Mo—Mo bonding. The three MoVO6 octa­hedra share their corners or edges with each other and with the Mo3O13 units.  相似文献   

10.
The black crystal of (NH4)[Mo2(S2)6]* 8/3 H2O belongs to the orthorhombic system, space group D32-P22121, with a = 12.064(6), b = 12.534(4), c = 19.558(9)Å, V =2957(3)Å3, Z = 4 and Dc = 2.23g.cm?3. The intensity data were collected on a Syntex R3 four-circle diffractometer. The structure was solved by Patterson method and direct method, the light atoms (except H atoms) were obtained from ΔF syntheses. The structure was refined by least-squares with anisotropic thermal parameters. The values of R and Rw were 0.092 and 0.072 respectively. The crystal structure contains discrete dimeric cluster [Mo2(S2)6]2? ions, NH4+ cations and H2O molecules. There are two crystallographically independent [Mo2S2)6]2? ions in the crystal, one locates on general position [Figure 1(a)], the other locates on two-fold axis [Figure 1(b)]. It contains one and a half [Mo2S2)6]2? ions in an asymmetric unit. In [Mo2S2)6]2? each Mo is coordinated side on by four S22? groups in a distorted dodecahedral arrangement, two of which are bridging and the other two are terminal. The Mo? S bond length is 2.441 Å (mean), and S? S is 2.049 Å (mean). The Mo? Mo distance is 2.784 Å (mean), which is to be regarded as a single bond length. The formal oxidation state of Mo is five, it is probably a mixed valence MoIV? MoVI, and so shows a remarkable deep colour.  相似文献   

11.
Thiochloro Anions of Molybdenum (IV). Crystal Structure of (NEt4)3[Mo33-S)(μ-S2)3Cl6]Cl μ CH2Cl2. Crystal Structure, Magnetic Properties, and EPR-Spectrum of (NEt4)2 [Mo2(μ-S2)(μ-Cl)2Cl6] From molybdenum pentachloride and tetraethylammonium hydrogensulfide in CH2Cl2 an insoluble product of composition (NEt4)2[Mo2S3Cl9] was obtained along with a brown solution, from which (NEt4)2[Mo2(S2)Cl8] was crystallized. The insoluble product and NEt4Cl react in CH2Cl2 to yield, among others, (NEt4)3[Mo3(S)(S2)3Cl6]Cl · CH2Cl2. The latter crystallizes in the orthorhombic space group Pnma, a = 2495.8, b = 1501.2, c = 1295.6 pm, Z = 4. According to the crystal structure determination (3070 observed reflexions, R = 0.049) the [Mo3(S)(S2)3Cl6]2? ion consists of an Mo3 triangle with Mo? Mo bonds, each side of the triangle is bridged by disulfido groups and one sulfur atom is capped over the Mo3 triangle; the single chloride ion is looseley associated to three S atoms. (NEt4)2[Mo2(S2)Cl8] also crystallizes in the space group Pnma, a = 1425.6, b = 1129.9, c = 2004.7 pm, Z = 4; structure determination with 1703 observed reflexions, R = 0.061. In the [Mo2(S2)Cl8]2? ion the Mo atoms are bridged via one disulfido group and two chlorine atoms. There is a Mo? Mo bond, but according to the magnetic properties and the EPR spectrum each Mo atom still possesses one unpaired electron.  相似文献   

12.
Hydrocarbon solutions of Mo2(O—t-Bu)6 and PF3 (2 equiv) yield Mo4F4(O—t-Bu)8, I, and PF2(O—t-Bu). Compound I contains a bisphenoid of molybdenum atoms with two short MoMo distances, 2.26 Å, and four long MoMo distances, 3.75 Å, corresponding to localized MoMo triple bonding and non-bonding distances, respectively. The tetranuclear compound may be viewed as a dimer, [Mo22-F)2(O-t-Bu)4]2, and addition of PMe3 to hydrocarbon solutions of I yields Mo2F2(O—t-Bu)4(PMe3)2, II, which contains an unbridged MoMo triple bond of distance 2.27 Å. Each molybdenum atom is coordinated to two oxygen atoms, one fluorine atom and the phosphorus atom of the PMe3 ligand in a roughly square planar manner. The overall central Mo2O4F2P2 skeleton has C2 symmetry and NMR studies (1H, 19F and 31P) are consistent with the maintenance of this type of structure in solution. Infrared and electronic absorption spectral data are reported. These are the first compounds containing fluorine ligands attached to the (MoMo)6+ unit.  相似文献   

13.
The six Mo atoms in the title compound, (C4H12N)2[Mo6O19].H2O, form a standard octahedral cage through bridging O atoms. The [Mo6O19]2? anion as a whole has Oh symmetry with three crystallographic fourfold axes aligned along Mo—O—Mo. There exist weak O?O hydrogen bonds (O100?O3 2.951 Å) between the terminal O3 atoms of the anions and O100 atoms of the solvate hydrates in the unit cell.  相似文献   

14.
The title compound, poly­[[di­aqua­di­bromo­cadmium‐μ‐(1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]decane‐N1:N5)‐aqua­cad­mium‐di‐μ‐bromo‐aqua­cadmium‐μ‐(1,3,5,7‐tetra­aza­tri­cyclo[3.3.1.13,7]decane‐N1:N5)‐di‐μ‐bromo] dihydrate], [Cd3­Br6­(C6­H12­N4)2­(H2O)4]·­2H2O, is made up of two‐dimensional neutral rectangular coordination layers. Each rectangular subunit is enclosed by a pair of Cd32‐Br)6(H2O)3 fragments and a pair of (μ2‐hmt)Cd(H2O)2Br22‐hmt) fragments as sides (hmt is hexa­methyl­enetetr­amine). The unique CdII atom in the Cd2Br2 ring in the Cd32‐Br)6(H2O)3 fragment is in a slightly distorted octahedral CdNOBr4 geometry, surrounded by one hmt ligand [2.433 (5) Å], one aqua ligand [2.273 (4) Å] and four Br atoms [2.6409 (11)–3.0270 (14) Å]. The CdII atom in the (μ2‐hmt)Cd(H2O)2Br22‐hmt) fragment lies on an inversion center and is in a highly distorted octahedral CdN2O2Br2 geometry, surrounded by two trans‐related N atoms of two hmt ligands [2.479 (5) Å], two trans‐related aqua ligands [2.294 (4) Å] and two trans‐related Br atoms [2.6755 (12) Å]. Adjacent two‐dimensional coordination sheets are connected into a three‐dimensional network by hydrogen bonds involving lattice water mol­ecules, and the aqua, bromo and hmt ligands belonging to different layers.  相似文献   

15.
Bis(μ‐3,11‐diethyl‐6,8‐di­phenyl‐3,6,8,11‐tetraphosphatri­dec­ane‐κ4P3,P6:P8,P11)­dirhodium(I) bis­(tetra­fluoro­borate), [Rh2(C25H40P4)2](BF4)2, is a bimetallic complex containing two binucleating tetra‐tertiary phosphine ligands. The distance between the metal centers is 5.4555 (11) Å, with no metal–metal bond. The Rh—P bond distances range from 2.2483 (14) to 2.3295 (14) Å. The geometry about the RhI atoms is tetrahedrally distorted square planar and the dihedral angle between the two coordination planes is 66.28 (5)°.  相似文献   

16.
This contribution focuses on complex [Mo2(H)2(μ-AdDipp2)2] ( 1 ) and tetrahydrofuran and pyridine adducts [Mo2(H)2(μ-AdDipp2)2(L)2] ( 1⋅thf and 1⋅py ), which contain a trans-(H)Mo≣Mo(H) core (AdDipp2=HC(NDipp2)2; Dipp=2,6-iPr2C6H3). Computational studies provide insights into the coordination and electronic characteristics of the central trans-Mo2H2 unit of 1 , with four-coordinate, fourteen-electron Mo atoms and ϵ-agostic interactions with Dipp methyl groups. Small size C- and N-donors give rise to related complexes 1⋅L but only one molecule of P-donors, for example, PMe3, can bind to 1 , causing one of the hydrides to form a three-centered, two-electron (3c-2e) Mo-H→Mo bond ( 2⋅PMe3 ). A DFT analysis of the terminal and bridging hydride coordination to the Mo≣Mo bond is also reported, along with reactivity studies of the Mo−H bonds of these complexes. Reactions investigated include oxidation of 1⋅thf by silver triflimidate, AgNTf2, to afford a monohydride [Mo2(μ-H)(μ-NTf2)(μ-AdDipp2)2] ( 4 ), with an O,O’-bridging triflimidate ligand.  相似文献   

17.
The quadruply bonded Mo24+ complex Mo2(DAniF)3(OOCC6F5) ( 1 ) [DAniF = N,N′‐bis(4‐methoxyphenyl)formamidinate] was synthesized. The solvate Mo2(DAniF)3(OOCC6F5) · (C6H6) ( 2 ) and co‐crystal Mo2(DAniF)3(OOCC6F5) · (C10H8) ( 3 ) complexes were obtained by self‐assembly of crystals of 1 with benzene and naphthalin, respectively. Compounds 1 , 2 , and 3 were structurally characterized by single‐crystal X‐ray diffraction. In monomer 1 , the Mo–Mo bond length of 2.0874(6) Å is typical for dimolybdenum quadruple bonds. The solvate complex 2 was stabilized by weak π–π stacking interactions between the benzene molecule and the pentafluorophenyl ring (as indicated by a center‐to‐center distance of 3.838(10) Å and a center‐to‐plane distance of 3.712(4) Å between phenyl and pentafluorophenyl ring) and intermolecular C–H ··· F–C interactions (the shortest F ··· H distance is 2.560(2) Å). In complex 3 , a one‐dimensional chain was formed by C–H ··· F–C interactions between the hydrogen atoms in naphthalin and the fluorine atoms in the monomer (H ··· F distances of 2.582(2) Å). Information on the structures in solution of the three crystals was obtained by 1H NMR spectroscopy.  相似文献   

18.
Compounds consisting of both cluster cations and cluster anions of the composition [(M6X12)(EtOH)6][(Mo6Cl8)Cl4X2] · n EtOH · m Et2O (M = Nb, Ta; X = Cl, Br) have been prepared by the reaction of (M6X12)X2 · 6 EtOH with (Mo6Cl8)Cl4. IR data are given for three compounds. The structures of [(Nb6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 3 EtOH · 3 Et2O 1 and [(Ta6Cl12)(EtOH)6][(Mo6Cl8)Cl6] · 6 EtOH 2 have been solved in the triclinic space group P1 (No. 2). Crystal data: 1 , a = 10.641(2) Å, b = 13.947(2) Å, c = 15.460(3) Å, α = 65.71(2)°, β = 73.61(2)°, γ = 85.11(2)°, V = 2005.1(8) Å3 and Z = 1; 2 , a = 11.218(2) Å, b = 12.723(3) Å, c = 14.134(3) Å, α = 108.06(2)°, β = 101.13(2)°, γ = 91.18(2)°, V = 1874.8(7) Å3 and Z = 1. Both structures are built of octahedral [(M6Cl12)(EtOH)6]2+ cluster cations and [(Mo6Cl8)Cl6]2– cluster anions, forming distorted CsCl structure types. The Nb–Nb and Ta–Ta bond lengths of 2.904 Å and 2.872 Å (mean values), respectively, are rather short, indicating weak M–O bonds. All O atoms of coordinated EtOH molecules are involved in H bridges. The Mo–Mo distances of 2.603 Å and 2.609 Å (on average) are characteristic for the [(Mo6Cl8)Cl6]2– anion, but there is a clear correlation between the number of hydrogen bridges to the terminal Cl and the corresponding Mo–Cl distances.  相似文献   

19.
Abstract

The electronic structures of S and Mo as well as the local coordination of Mo are investigated as a function of metal promotion Chevrel-phase (CP) sulfides. We observe the effect of metal promoter-induced electron donation into the stoichiometric range MxMo6S8 (M?=?Fe, Ni, Cu; x?=?0–2) through analysis of X-ray absorption near-edge structure regions. We further observe the effect of this promotion on the bonding environment of Mo6 metal centers through extended X-ray absorption fine structure analysis. We monitor expansion and contraction of Mo6 octahedra with and without metal promotion, as has been predicted by Hückel molecular orbital theory. We further observe a marked tunability in the electronic structure of sulfur upon charge transfer between promoting species and Mo6S8 units. Average Mo6 octahedron Mo–Mo bond contraction from 2.76 Å to as short as 2.69 Å was observed upon incorporation of metal promoters, while intercluster separation displays a pronounced increase for promoter-host lattices compared to un-promoted Mo6S8. To corroborate spectroscopically observed phenomena, we performed computational analyses of spin-polarized densities of state for the CP materials investigated herein, where a detectable increase in sulfur-based frontier orbital population is observed in accordance with experimentally validated orbital filling.  相似文献   

20.
A tetranuclear molybdenum cluster compound {Mo43-S)33-O)[S2P(OEt)2]5} · 3CH3CN was obtained by the reaction of MoCl3 · 3H2O with P2S5 in ethanol and then recrystallization from acetonitrile. The compound crystallizes in the trigonal system belonging to the space group R3 with the following cell dimensions: a = b = c = 12.852 (3) Å, α = β = γ = 108.37 (2)°, V =1697.3Å3 Z = 1, Dc. = 1.693g.cm?3. The structure was solved by heavy atom method and refined by full-matrix least-squares to R = 0.072 for 1781 reflections with I≥3σ(I). The results of the structure determination indicate that the cluster skeleton possesses a cubanelike cluster core formed by four Mo atoms located in a distored tetrahedron with three S atoms and one O atom as its triple bridging atoms. There are two sets of bond distances, i.e. 2.700 (1) and 2.831(1) Å in the six Mo—Mo bonds. Taking the Mo cluster core as a whole, it has a formal oxidation state of +14, leaving ten electrons to form the metal-metal bonds. Thus each Mo—Mo bond has an average bond order of 5/6.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号