首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
New Copper(I, II) Compounds Complexes of the type [CuII(N∩N)2][CuICl1+x]2x (N∩N = en, pn, 2-amino picoline) are prepared from Cu(N∩N)2Cl2 and copper(I) chloride. [CuII(enac)][CuICl2]2 — a complex with a macrocyclic cation — is obtained, by the reaction of Cuen2Cl2 in aqueous acetone. Diacetyl monoxime partially reduces copper(II) of Cu(NSMe)2Cl2 and in this way causes the formation of [Cu(NSMe)2][CuCl3] (NSMe = β-aminoethyl methylsulfide). On the other hand a template reaction of this oxime with Cu(NSMe)2 (ClO4)2 produces CuII(ONNSMe)(ClO4) (HONNSMe?CH3C(NOH)C(NCH2CH2SCH3)CH3), which shows a reduced paramagnetism. Basing on magnetic behaviour, i. r. and vis spectra the structure of the new compounds is discussed.  相似文献   

2.
The title compound, {[Cu(NH3)4][Cu(CN)3]2}n, features a CuI–CuII mixed‐valence CuCN framework based on {[Cu2(CN)3]}n anionic layers and [Cu(NH3)4]2+ cations. The asymmetric unit contains two different CuI ions and one CuII ion which lies on a centre of inversion. Each CuI ion is coordinated to three cyanide ligands with a distorted trigonal–planar geometry, while the CuII ion is ligated by four ammine ligands, with a distorted square‐planar coordination geometry. The interlinkage between CuI ions and cyanide bridges produces a honeycomb‐like {[Cu2(CN)3]}n anionic layer containing 18‐membered planar [Cu(CN)]6 metallocycles. A [Cu(NH3)4]2+ cation fills each metallocyclic cavity within pairs of exactly superimposed {[Cu2(CN)3]}n anionic layers, but there are no cations between the layers of adjacent pairs, which are offset. Pairs of N—H...N hydrogen‐bonding interactions link the N—H groups of the ammine ligands to the N atoms of cyanide ligands.  相似文献   

3.
In the title compound, [CuCl2(C9H12N2O)], the CuII atom is coordinated by two Cl anions and two N atoms of one O‐ethyl 3‐methyl­pyridine‐2‐carboximidic acid mol­ecule in a slightly distorted square‐planar geometry, with Cu—N distances of 2.0483 (17) and 1.9404 (18) Å, and Cu—Cl distances of 2.2805 (10) and 2.2275 (14) Å. In addition, each CuII atom is connected by one Cl anion and the CuII atom from a neighbouring mol­ecule, with Cu⋯Cl and Cu⋯Cu distances of 2.9098 (13) and 3.4022 (12) Å, respectively, and, therefore, a centrosymmetric dimer is formed. Adjacent mol­ecular dimers are connected by π–π stacking inter­actions between pyridine rings to form a zigzag mol­ecular chain. The mol­ecular chains are also enforced by N—H⋯Cl and C—H⋯Cl inter­actions.  相似文献   

4.
The CuII ion in the title complex, [Cu(C5H10NO3)2] or [Cu(He‐ala)2] [He‐ala = N‐(2‐hydroxy­ethyl)‐β‐alaninate], resides at the inversion centre of a square bipyramid comprised of two facially arranged tridentate He‐ala ligands. Each He‐ala ligand binds to a CuII ion by forming one six‐membered β‐alaninate chelate ring in a twist conformation and one five‐membered ethanol­amine ring in an envelope conformation, with Cu—N = 2.017 (2) Å, Cu—OCOO = 1.968 (1) Å and Cu—OOH = 2.473 (2) Å. The [Cu(He‐ala)2] mol­ecules are involved in a network of O—H⋯O and N—H⋯O hydrogen bonds, forming layers parallel to the (10) plane. The layers are connected into a three‐dimensional structure by van der Waals inter­actions, so that the mol­ecular centres form pseudo‐face‐centered close packing.  相似文献   

5.
The title compound, [Cu(C7H3O6S)2(C10H9N3)2][CuI(C10H9N3)2]2·2H2O, consists of anionic CuII moieties, cationic CuI species and uncoordinated water mol­ecules. The anionic dimeric unit consists of one crystallographically independent fully deprotonated 5‐sulfosalicylate (2‐oxido‐5‐sulfonatobenzoate) anion, a di‐2‐pyridylamine group and a CuII atom. Each CuII atom is five‐coordinate within a square‐pyramidal geometry. The anion lies on a special position of site symmetry. In the cationic monomer, the CuI atom adopts tetra­hedral geometry. The cations and anions are connected by O—H·O and N—H·O hydrogen bonds.  相似文献   

6.
In the title complex, [Cu(C7H4NO3S)2(C2H7NO)2], the CuII centre lies on an inversion centre and exhibits octahedral coordination, with the two ethano­lamine (Hea) and two saccharinate [sac; anionic 1,2-benziso­thia­zol-3(2H)-one 1,1-dioxide] ligands in a trans configuration. The bidentate Hea ligands bridge axial and equatorial positions and the sac anions occupy equatorial sites around the distorted octahedral copper(II) centre [Cu—O = 2.3263 (16), Cu—NHea = 1.9923 (16) and Cu—Nsac = 2.1776 (16) Å].  相似文献   

7.
The bimetallic title complex, [CuFe(CN)5(C12H30N6O2)(NO)] or [Cu(L)Fe(CN)5(NO)] [where L is 1,8‐bis(2‐hydroxy­ethyl)‐1,3,6,8,10,13‐hexa­aza­cyclo­tetra­decane], has a one‐dimensional zigzag polymeric –Cu(L)–NC–Fe(NO)(CN)3–CN–Cu(L)– chain, in which the CuII and FeII centres are linked by two CN groups. In the complex, the CuII ion is coordinated by four N atoms from the L ligand [Cu—N(L) = 1.999 (2)–2.016 (2) Å] and two cyanide N atoms [Cu—N = 2.383 (2) and 2.902 (3) Å], and has an elongated octahedral geometry. The FeII centre is in a distorted octahedral environment, with Fe—N(nitroso) = 1.656 (2) Å and Fe—C(CN) = 1.938 (3)–1.948 (3) Å. The one‐dimensional zigzag chains are linked to form a three‐dimensional network via N—H⋯N and O—H⋯N hydrogen bonds.  相似文献   

8.
In the title compound, [Cu2(C19H24N2O4)2(H2O)2]·2H2O, the asymmetric unit consists of one half of the bis{μ‐6,6′‐dimethoxy‐2,2′‐[propane‐1,2‐diylbis(iminomethylene)]diphenolato}bis[aquacopper(II)] complex and two water molecules. Two CuII centres are bridged through a pair of phenolate groups, resulting in a complex with a centrosymmetric structure, with the centre of inversion at the middle of the Cu2O2 plane. The Cu atoms are in a slightly distorted square‐pyramidal coordination environment (τ = 0.07). The average equatorial Cu—O bond length and the axial Cu—O bond length are 1.928 (3) and 2.486 (3) Å, respectively. The Cu—O(water) bond length is 2.865 (4) Å, so the compound could be described as having a weakly coordinating water molecule at each CuII ion and two solvent water molecules per dimetallic unit. The Cu...Cu distance and Cu—O—Cu angle are 3.0901 (10) Å and 87.56 (10)°, respectively. The molecules are linked into a sheet by O—H...O and C—H...O hydrogen bonds parallel to the [001] plane.  相似文献   

9.
In the title dinuclear CuII compound, [Cu2Cl3(C19H19N3)3]ClO4·0.5H2O, the coordination geometry around the Cu atoms is square pyramidal, with the bridging Cl atom at the apical positions. The Cu—Cl—Cu angle is 136.9 (1)° and the Cu?Cu distance is 4.961 (1) Å.  相似文献   

10.
Ligand substitution of the triply deprotonated tetrapeptide ligand with bulky α-carbon substituents, in the tetrapeptide complexes of Cu(II) and Ni(II) by the bidentate ligands 2,2-bipyridine and 1,10-phenanthroline has been studied. The mechanism in the CuII(H-3A4)2? and the CuII(H-3F4)2? complexes shows a proton-assisted nucleophilic attack, and the CuII(H-3V4)2? shows both proton-assisted and direct equatorial nucleophilic attack by the bidentate ligands. A factor of ten decrease in the rate of substitution from CuII(H-3A4)2? to CuII(H-3V4)2?, and also CuII(H-3F4)2? is an indication of a steric hindrance on the substitution rate because of atom overcrowding due to the size of the α-carbon substituents in the CuII(H-3V4)2? and CuII(H-3F4)2? complexes. The substitution of the triply deprotonated tetrapeptide ligand in NiII(H-3A4)2? by 2,2-bipyridine and 1,10-phenanthroline shows a kinetic behaviour completely different to that of the Cu(II)-tetrapeptide complexes. Only a direct equatorial nucleophilic attack by the bidentate ligands has been observed.  相似文献   

11.
In the title compound, [Cu(C2N3)(C10H8N2)2]BF4, the CuII atom shows distorted trigonal‐bipyramidal geometry, with the dicyan­amido ligand in the equatorial plane. The two out‐of‐plane Cu—N bond lengths to bi­pyridine are 2.006 (3) and 1.998 (3) Å, whereas the in‐plane Cu—N distances are 2.142 (3) and 2.043 (3) Å to the bi­pyridine, and 2.015 (3) Å to the dicyan­amide.  相似文献   

12.
The structure of the title compound, [NiCu(CN)4(C10H8N2)(H2O)2]n or [{Cu(H2O)2}(μ‐C10H8N2)(μ‐CN)2{Ni(CN)2}]n, was shown to be a metal–organic cyanide‐bridged framework, composed essentially of –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains (4,4′‐bpy is 4,4′‐bipyridine) linked by [Ni(CN)4]2− anions. Both metal atoms sit on special positions; the CuII atom occupies an inversion center, while the NiII atom of the cyanometallate sits on a twofold axis. The 4,4′‐bpy ligand is also situated about a center of symmetry, located at the center of the bridging C—C bond. The scientific impact of this structure lies in the unique manner in which the framework is built up. The arrangement of the –Cu–4,4′‐bpy–Cu–4,4′‐bpy–Cu– chains, which are mutually perpendicular and non‐intersecting, creates large channels running parallel to the c axis. Within these channels, the [Ni(CN)4]2− anions coordinate to successive CuII atoms, forming zigzag –Cu—N[triple‐bond]C—Ni—C[triple‐bond]N—Cu– chains. In this manner, a three‐dimensional framework structure is constructed. To the authors' knowledge, this arrangement has not been observed in any of the many copper(II)–4,4′‐bipyridine framework complexes synthesized to date. The coordination environment of the CuII atom is completed by two water molecules. The framework is further strengthened by O—H...N hydrogen bonds involving the water molecules and the symmetry‐equivalent nonbridging cyanide N atoms.  相似文献   

13.
The title compound, potassium bis(ethylenediamine‐N,N′)copper(II) hexacyanoferrate(III), K[Cu(C2H8N2)2]‐[Fe(CN)6], contains [Cu(en)2]2+ and [Fe(CN)6]3? complex ions, where en is ethylenediamine. The FeIII and K+ ions lie on twofold axes and the CuII atom lies on an inversion center. The [Cu(en)2]2+ ion has square‐planar coordination with a mean Cu—N distance of 1.992 (2) Å and the [Fe(CN)6]3? ion has distorted octahedral coordination with a mean Fe—C distance of 1.947 (2) Å.  相似文献   

14.
The title compund, [Cu2(OH)2(C22H25N3)2](ClO4)2, is a copper(II) dimer, with two [CuL]2+ units [L is bis(6‐methyl‐2‐pyridylmethyl)(2‐phenylethyl)amine] bridged by hydroxide groups to define the {[CuL](μ‐OH)2[CuL]}2+ cation. Charge balance is provided by perchlorate counter‐anions. The cation has a crystallographic inversion centre halfway between the CuII ions, which are separated by 3.0161 (8) Å. The central core of the cation is an almost regular Cu2O2 parallelogram of sides 1.931 (2) and 1.935 (2) Å, with a Cu—O—Cu angle of 102.55 (11)°. The coordination geometry around each CuII centre can be best described as a square‐based pyramid, with three N atoms from L ligands and two hydroxide O atoms completing the coordination environment. Each cationic unit is hydrogen bonded to two perchlorate anions by means of hydroxide–perchlorate O—H...O interactions.  相似文献   

15.
In the title complex, [Cu(N3)2(C15H26N2)], the Cu atom is surrounded by the two N atoms of the chelating (?)‐α‐isosparteine ligand and another two N atoms from the two azide anions, forming a distorted CuN4 tetrahedron. The two azide anions are terminally bound to the CuII atom, and the dihedral angle between the Nsparteine—Cu—Nsparteine and Nazide—Cu—Nazide planes is 50.0 (2)°.  相似文献   

16.
In the first title salt, [Cu(C12H8N2)2(C5H10N2Se)](ClO4)2, the CuII centre occupies a distorted trigonal–bipyramidal environment defined by four N donors from two 1,10‐phenanthroline (phen) ligands and by the Se donor of a 1,3‐dimethylimidazolidine‐2‐selone ligand, with the equatorial plane defined by the Se and by two N donors from different phen ligands and the axial sites occupied by the two remaining N donors, one from each phen ligand. The Cu—N distances span the range 1.980 (10)–2.114 (11) Å and the Cu—Se distance is 2.491 (3) Å. Intermolecular π–π contacts between imidazolidine rings and the central rings of phen ligands generate chains of cations. In the second salt, [Cu(C10H8N2)2(C3H6N2S)](ClO4)2, the CuII centre occupies a similar distorted trigonal–bipyramidal environment comprising four N donors from two 2,2′‐bipyridyl (bipy) ligands and an S donor from an imidazolidine‐2‐thione ligand. The equatorial plane is defined by the S donor and two N donors from different bipy ligands. The Cu—N distances span the range 1.984 (6)–2.069 (7) Å and the Cu—S distance is 2.366 (3) Å. Intermolecular π–π contacts between imidazolidine and pyridyl rings form chains of cations. A major difference between the two structures is due to the presence in the second complex of two N—H...O hydrogen bonds linking the imidazolidine N—H hydrogen‐bond donors to perchlorate O‐atom acceptors.  相似文献   

17.
The title compound, [Cu(C9H5N2O3)2(C2H6OS)2], consists of octahedrally coordinated CuII ions, with the 3‐oxo‐3,4‐dihydroquinoxaline‐2‐carboxylate ligands acting in a bidentate manner [Cu—O = 1.9116 (14) Å and Cu—N = 2.1191 (16) Å] and a dimethyl sulfoxide (DMSO) molecule coordinated axially via the O atom [Cu—O = 2.336 (5) and 2.418 (7) Å for the major and minor disorder components, respectively]. The whole DMSO molecule exhibits positional disorder [0.62 (1):0.38 (1)]. The octahedron around the CuII atom, which lies on an inversion centre, is elongated in the axial direction, exhibiting a Jahn–Teller effect. The ligand exhibits tautomerization by H‐atom transfer from the hydroxyl group at position 3 to the N atom at position 4 of the quinoxaline ring of the ligand. The complex molecules are linked through an intermolecular N—H...O hydrogen bond [N...O = 2.838 (2) Å] formed between the quinoxaline NH group and a carboxylate O atom, and by a weak intermolecular C—H...O hydrogen bond [3.392 (11) Å] formed between a carboxylate O atom and a methyl C atom of the DMSO ligand. There is a weak intramolecular C—H...O hydrogen bond [3.065 (3) Å] formed between a benzene CH group and a carboxylate O atom.  相似文献   

18.
Bis(hinokitiolato)copper(II), Cu(hino)2, exhibits both antibacterial and antiviral properties, and has been previously shown to exist in two modifications. A third modification has now been confirmed, namely tetrakis(μ2‐3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)bis(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)tricopper(II)–bis(μ2‐3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)bis[(3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olato)copper(II)] (1/1), [Cu(C10H11O2)2]3·[Cu(C10H11O2)2]2, where 3‐isopropyl‐7‐oxocyclohepta‐1,3,5‐trien‐1‐olate is the systematic name for the hinokitiolate anion. This new modification is composed of discrete [cis‐Cu(hino)2]2[trans‐Cu(hino)2] trimers and [cis‐Cu(hino)2]2 dimers. The Cu atoms are bridged by μ2‐O atoms from the hinokitiolate ligands to give distorted square‐pyramidal and distorted octahedral CuII coordination environments. Hence, the CuII environments are CuO5/CuO6/CuO5 for the trimer and CuO5/CuO5 for the dimer. Each trimer and dimer has crystallographically imposed inversion symmetry. The trimer has never been observed before, the dimer has been seen only once before, and the combination of the two together in the same lattice is unprecedented. The CuO5 cores exhibit four strong basal Cu—O bonds [1.915 (2)–1.931 (2) Å] and one weak apical Cu—O bond [2.652 (2)–2.658 (2) Å]. The CuO6 core exhibits four strong equatorial Cu—O bonds [1.922 (2)–1.929 (2) Å] and two very weak axial Cu—O bonds [2.911 (3) Å]. The bite angles for the chelating hinokitiolate ligands range from 83.13 (11) to 83.90 (10)°.  相似文献   

19.
Summary Nine different CuII(sulf)2 and three mixed CuII(sulf)2X2–3 (X=NH3 or pyridine) derivatives were prepared from CuII and sulfanilamides (sulfH=sulfadiazine, sulfadimethoxine, sulfadimidine, sulfamerazine, sulfamethoxydiazine, sulfamethoxypyridazine, sulfapyridine, sulfathiazole and sulfisomidine) in alkaline solution and their e.s.r., i.r. and ligandfield spectroscopic properties were evaluated. Two types of Cu(sulf)2 complexes were formed: dimeric and monomeric/ polymeric species.  相似文献   

20.
Reaction of either K3[Fe(CN)6] or K4[Fe(CN)6] with a macrocyclic CuII complex, [Cu(teta)](ClO4)2 (teta = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacylotetradecane), in aqueous solution gave the same product as shown by spectroscopic and physicochemical characterisation. The crystal structure of the complex shows that it is a one-dimensional linear chain type heterobinuclear FeIII–CuII polymer. The unit is composed of a [Cu(teta)(H2O)2]2+ cationic complex, a FeIII–CuII alternate linear chain unit, a ClO 4 ion and four water molecules. The Cu atom is coordinated in a distorted octahedral arrangement by four nitrogen atoms from one teta ligand and two nitrogen atoms of the bridging cyanide groups. The Cu—N bond distances involving the cyanide bridges, 2.522(7) and 2.608(7)Å, respectively, indicate weak antiferromagnetic interactions between the FeIII and CuII atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号