首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 527 毫秒
1.
The purpose of this study was to analyse secondary school students’ (N = 16) computer-supported collaborative mathematical problem solving. The problem addressed in the study was: What kinds of metacognitive processes appear during computer-supported collaborative learning in mathematics? Another aim of the study was to consider the applicability of networked learning in mathematics. The network-based learning environment Knowledge Forum (KF) was used to support students’ collaborative problem solving. The data consist of 188 posted computer notes, portfolio material such as notebooks, and observations. The computer notes were analysed through three stages of qualitative content analysis. The three stages were content analysis of computer notesin mathematical problem solving, content analysis of mathematical problem solving activity and content analysis of the students’ metacognitive activity. The results of the content analysis illustrate how networked discussions mediated mathematical knowledge and students’ questions, while the mathematical problem solving activity shows that the students co-regulate their thinking. The results of the content analysis of the students’ metacognitive activity revealed that the students use metacognitive knowledge and make metacognitive judgments and perform monitoring during networked discussions. In conclusion, the results of this study demonstrate that working with the networked technology contributes to the students’ use of their mathematical knowledge and stimulates them into making their thinking visible. The findings also show some metacognitive activity in the students’ computer-supported collaborative problem solving in mathematics.  相似文献   

2.
In this study, I examine how using a writers' workshop model in mathematics creates a space for students to write about their mathematical thinking and problem solving and how their writing impacts instruction. This case study of one classroom with one teacher spanned 6 weeks and included 18 implementations of an adapted version of the Writers' Workshop (WW) in a fourth‐grade mathematics class. On a biweekly basis, the data were reviewed and changes made to the model. The analysis of the students' writing revealed (a) their understandings and misunderstandings of the mathematical content, (b) their readiness for more challenging tasks, and (c) their connections to prior knowledge. Students used writing to demonstrate their understanding of mathematics and show their mathematical processes. In some cases, examining only the numerical work failed to illuminate the students' understanding, their writing provided deeper insight. Students recognized writing as a tool for learning; this was evident in interview responses.  相似文献   

3.
4.
This exploratory study extends our earlier work that identified the importance of metacognitive behaviors in mathematical problem solving in a small-group setting. In that study 27 seventh-grade students of varying ability were observed working in six small groups. The current investigation examines the perceptions of those students about themselves as problem solvers and about working in a small group. Data were obtained through videotapes of the students working in small groups and audiotapes of stimulated-recall interviews of the individual students. The results provided insight regarding the ways that beliefs, emotions and attitudes of students of varying ability influenced their own and their peers' metacognitive behaviors within their respective groups. The findings suggest a number of implications for teachers regarding the modality, level and frequency of assessment of group problem solving.  相似文献   

5.
Understanding mathematical functions as systematic processes involving the covariation of related variables is foundational in learning mathematics. In this article, findings are reported from two investigations examining students' thinking processes with functions. The first study focused on seven middle school students' explorations with a dynamic physical model. Students were videotaped during the 20‐ to 45‐minute sessions occurring two or three times per week over a period of 2 months, and students' written work was collected. The second investigation included 19 preservice elementary and middle school teachers enrolled in a course focusing on a combination of mathematical content and pedagogy. Participants' written problem‐solving work and reflective writing were collected, and participants were individually interviewed in 50‐minute videotaped sessions. Results from both investigations indicated that students often relied on a table, or some variation of a table, as a cognitive link advancing the development of their reasoning about underlying function relationships.  相似文献   

6.
7.
The findings reported in this paper were generated from a case study of teacher leaders at a state‐level mathematics conference. Investigation focused on how participants viewed the mathematical processes of communication, connections, representations, problem solving, and reasoning and proof. Purposeful sampling was employed to select nine participants who were then interviewed and observed as they presented a session at the conference. Participants' statements revealed differences in their views of mathematical processes. The analysis led to an emergent framework for views of mathematical processes that includes three levels: participatory, experiential, and sense‐making. Implications are shared for mathematics methods instructors, professional learning, and research. Discussion also relates the framework to the Standards for Mathematical Practice.  相似文献   

8.
This study investigates young students’ writing in connection to mathematical problem solving. Students’ written communication has traditionally been used by mathematics teachers in the assessment of students’ mathematical knowledge. This study rests on the notion that this writing represents a particular activity which requires a complex set of resources. In order to help students develop their writing, teachers need to have a thorough knowledge of mathematical writing and its distinctive features. The study aims to add to the body of knowledge about writing in school mathematics by investigating young students’ mathematical writing from a communicational, rather than mathematical, perspective. A basic inventory of the communicational choices, that are identifiable across a sample of 519 mathematical texts, produced by 9–12 year old students, is created. The texts have been analysed with multimodal discourse analysis, and the findings suggest diversity in students’ use of images, words, numerals, symbols and layout to organize their texts and to represent their problem-solving process along with an answer to the problem. The inventory and the indication that students have different ideas on how, what, for whom and why they should be writing, can be used by teachers to initiate discussions of what may constitute good communication.  相似文献   

9.
The current body of literature suggests an interactive relationship between several of the process standards advocated by National Council of Teachers of Mathematics. Verbal and written mathematical communication has often been described as an alternative to typical mathematical representations (e.g., charts and graphs). Therefore, the relationship between these two processes has been characterized as interchangeable. The current study examined mathematics preservice teachers’ elicitation of the process standards from high school students during a letter‐writing project. Correlational analysis illustrated two sets of relationships: one between communication, problem solving, and reasoning and proof; and a weaker, parallel relationship between representation, problem solving, and reasoning and proof. Additionally, it was found that written communication and representation were elicited in isolation of each other significantly more often than in conjunction, supporting claims of the literature. Implications of these findings and suggestions of future research are described.  相似文献   

10.
Gerald A. Goldin 《ZDM》2004,36(2):56-60
It has been suggested that activities in discrete mathematics allow a kind of new beginning for students and teachers. Students who have been “turned off” by traditional school mathematics, and teachers who have long ago routinized their instruction, can find in the domain of discrete mathematics opportunities for mathematical discovery and interesting, nonroutine problem solving. Sometimes formerly low-achieving students demonstrate mathematical abilities their teachers did not know they had. To take maximum advantage of these possibilities, it is important to know what kinds of thinking during problem solving can be naturally evoked by discrete mathematical situations—so that in developing a curriculum, the objectives can include pathways to desired mathematical reasoning processes. This article discusses some of these ways of thinking, with special attention to the idea of “modeling the general on the particular.” Some comments are also offered about students' possible affective pathways and structures.  相似文献   

11.
The study compares 140 third-grade Israeli students (lower and higher achievers) who were either exposed to self-regulated learning (SRL) supported by metacognitive questioning (the MS group) or received no direct SRL support (the N_MS group). We investigated: (a) mathematical problem solving performance; (b) metacognitive strategy use in three phases of the problem-solving process; and (c) mathematics anxiety. Findings indicated that the MS students showed greater gains in mathematical problem solving performance than the N_MS students. They reported using metacognitive strategies more often, and showed a greater reduction in anxiety. In particular, the lower MS achievers showed these gains in the basic and complex tasks, in strategy use during the on-action phase of the problem solving process and a decrease in negative thoughts. The higher achievers showed greater improvement in transfer tasks and an increase in positive thoughts towards mathematics. Both the theoretical and practical implications of this study are discussed.  相似文献   

12.
Findings from physics education research strongly point to the critical need for teachers’ use of multiple representations in their instructional practices such as pictures, diagrams, written explanations, and mathematical expressions to enhance students' problem‐solving ability. In this study, we explored use of problem‐solving tasks for generating multiple representations as a scaffolding strategy in a high school modeling physics class. Through problem‐solving cognitive interviews with students, we investigated how a group of students responded to the tasks and how their use of such strategies affected their problem‐solving performance and use of representations as compared to students who did not receive explicit, scaffolded guidance to generate representations in solving similar problems. Aggregated data on students' problem‐solving performance and use of representations were collected from a set of 14 mechanics problems and triangulated with cognitive interviews. A higher percentage of students from the scaffolding group constructed visual representations in their problem‐solving solutions, while their use of other representations and problem‐solving performance did not differ with that of the comparison group. In addition, interviews revealed that students did not think that writing down physics concepts was necessary despite being encouraged to do so as a support strategy.  相似文献   

13.
14.
This study formally explored how high school students addressed audience when they wrote mathematically. Student explicated the solving of a mathematics problem to their mathematics teacher and their English teacher. This study showed that students did change the style and language of their mathematical writing as their audience changed. It adds knowledge and support to current ideas of teacher presentation during routine daily instruction. Also included are implications this information may have on mathematics education.  相似文献   

15.
Studies highlight that using appropriate strategies during problem solving is important to improve problem-solving skills and draw attention to the fact that using these skills is an important part of students’ self-regulated learning ability. Studies on this matter view the self-regulated learning ability as key to improving problem-solving skills. The aim of this study is to investigate the relationship between mathematical problem-solving skills and the three dimensions of self-regulated learning (motivation, metacognition, and behaviour), and whether this relationship is of a predictive nature. The sample of this study consists of 323 students from two public secondary schools in Istanbul. In this study, the mathematics homework behaviour scale was administered to measure students’ homework behaviours. For metacognition measurements, the mathematics metacognition skills test for students was administered to measure offline mathematical metacognitive skills, and the metacognitive experience scale was used to measure the online mathematical metacognitive experience. The internal and external motivational scales used in the Programme for International Student Assessment (PISA) test were administered to measure motivation. A hierarchic regression analysis was conducted to determine the relationship between the dependent and independent variables in the study. Based on the findings, a model was formed in which 24% of the total variance in students’ mathematical problem-solving skills is explained by the three sub-dimensions of the self-regulated learning model: internal motivation (13%), willingness to do homework (7%), and post-problem retrospective metacognitive experience (4%).  相似文献   

16.
从实证的角度探讨数学解题的元认知模型.以数学解题中的元认知知识、元认知体验、元认知策略三者为基本因素,研制一份元认知问卷;施测问卷,对数据进行探索性因素分析和验证性因素分析,检验因素假设与数据之间的拟合程度.施测正式问卷于高师生,结果表明,高师生数学解题的元认知模型还保持一定程度的发展,而且发展不平衡.总体水平而言,女生比男生好;大三学生明显高于大二、大一学生,大一优于大二,大二年级是个转折时期.  相似文献   

17.
The focus of this article is children's construction and analogical transfer of mathematical knowledge during novel problem solving, as reflected in their strategies for dealing with isomorphic combinatorial problems presented in “hands-on” and written form. Case studies of low- and high-achieving 9-year-olds in school mathematics serve to illustrate a general progression through three identified stages of strategy construction. The important role of domain-general strategies in this development is highlighted. Included in the study's findings is the fact that achievement level in school mathematics does not predict children's attainment of the third stage, as is evidenced by the low-achieving student's construction of sophisticated combinatorial knowledge and the high-achieving student's failure to do so. Children's ability to recognize structural correspondence between the two isomorphic problem sets and the extent to which this facilitates problem solution are also reported.  相似文献   

18.
19.
This article describes a study of how students construct relations of authority during dyadic mathematical work and how teachers’ interactions with students during small group conferences affect subsequent student dynamics. Drawing on the influence framework (Engle, Langer-Osuna, & McKinney de Royston, 2014), I examined interactions when students appropriated their peers’ ideas during collaborative mathematical problem solving and noted that each moment tended to follow particular interactions around authority. Notably, social and intellectual forms of authority became linked in ways that were directly related to how students’ ideas and behaviors were evaluated by the teacher. I close by discussing how the study of authority and influence offers fertile analytic ground to generate new understandings about collaborative student work in mathematics classrooms.  相似文献   

20.
Meaningful learning of formal mathematics in regular classrooms remains a problem in mathematics education. Research shows that instructional approaches in which students work collaboratively on tasks that are tailored to problem solving and reflection can improve students’ learning in experimental classrooms. However, these sequences involve often carefully constructed reinvention route, which do not fit the needs of teachers and students working from conventional curriculum materials. To help to narrow this gap, we developed an intervention—‘shift problem lessons’. The aim of this article is to discuss the design of shift problems and to analyze learning processes occurring when students are working on the tasks. Specifically, we discuss three paradigmatic episodes based on data from a teaching experiment in geometrical proof. The episodes show that is possible to create a micro-learning ecology where regular students are seriously involved in mathematical discussions, ground their mathematical understanding and strengthen their relational framework.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号