共查询到19条相似文献,搜索用时 15 毫秒
1.
Jesús S. Dehesa 《Entropy (Basel, Switzerland)》2022,24(11)
The various facets of the internal disorder of quantum systems can be described by means of the Rényi entropies of their single-particle probability density according to modern density functional theory and quantum information techniques. In this work, we first show the lower and upper bounds for the Rényi entropies of general and central-potential quantum systems, as well as the associated entropic uncertainty relations. Then, the Rényi entropies of multidimensional oscillator and hydrogenic-like systems are reviewed and explicitly determined for all bound stationary position and momentum states from first principles (i.e., in terms of the potential strength, the space dimensionality and the states’s hyperquantum numbers). This is possible because the associated wavefunctions can be expressed by means of hypergeometric orthogonal polynomials. Emphasis is placed on the most extreme, non-trivial cases corresponding to the highly excited Rydberg states, where the Rényi entropies can be amazingly obtained in a simple, compact, and transparent form. Powerful asymptotic approaches of approximation theory have been used when the polynomial’s degree or the weight-function parameter(s) of the Hermite, Laguerre, and Gegenbauer polynomials have large values. At present, these special states are being shown of increasing potential interest in quantum information and the associated quantum technologies, such as e.g., quantum key distribution, quantum computation, and quantum metrology. 相似文献
2.
High Dimensional Atomic States of Hydrogenic Type: Heisenberg-like and Entropic Uncertainty Measures
Jesús S. Dehesa 《Entropy (Basel, Switzerland)》2021,23(10)
High dimensional atomic states play a relevant role in a broad range of quantum fields, ranging from atomic and molecular physics to quantum technologies. The D-dimensional hydrogenic system (i.e., a negatively-charged particle moving around a positively charged core under a Coulomb-like potential) is the main prototype of the physics of multidimensional quantum systems. In this work, we review the leading terms of the Heisenberg-like (radial expectation values) and entropy-like (Rényi, Shannon) uncertainty measures of this system at the limit of high D. They are given in a simple compact way in terms of the space dimensionality, the Coulomb strength and the state’s hyperquantum numbers. The associated multidimensional position–momentum uncertainty relations are also revised and compared with those of other relevant systems. 相似文献
3.
4.
The spreading of the stationary states of the multidimensional single-particle systems with a central potential is quantified by means of Heisenberg-like measures (radial and logarithmic expectation values) and entropy-like quantities (Fisher, Shannon, Rényi) of position and momentum probability densities. Since the potential is assumed to be analytically unknown, these dispersion and information-theoretical measures are given by means of inequality-type relations which are explicitly shown to depend on dimensionality and state’s angular hyperquantum numbers. The spherical-symmetry and spin effects on these spreading properties are obtained by use of various integral inequalities (Daubechies–Thakkar, Lieb–Thirring, Redheffer–Weyl, ...) and a variational approach based on the extremization of entropy-like measures. Emphasis is placed on the uncertainty relations, upon which the essential reason of the probabilistic theory of quantum systems relies. 相似文献
5.
In this paper, we generalize the notion of Shannon’s entropy power to the Rényi-entropy setting. With this, we propose generalizations of the de Bruijn identity, isoperimetric inequality, or Stam inequality. This framework not only allows for finding new estimation inequalities, but it also provides a convenient technical framework for the derivation of a one-parameter family of Rényi-entropy-power-based quantum-mechanical uncertainty relations. To illustrate the usefulness of the Rényi entropy power obtained, we show how the information probability distribution associated with a quantum state can be reconstructed in a process that is akin to quantum-state tomography. We illustrate the inner workings of this with the so-called “cat states”, which are of fundamental interest and practical use in schemes such as quantum metrology. Salient issues, including the extension of the notion of entropy power to Tsallis entropy and ensuing implications in estimation theory, are also briefly discussed. 相似文献
6.
Recently, Savaré-Toscani proved that the Rényi entropy power of general probability densities solving the p-nonlinear heat equation in is a concave function of time under certain conditions of three parameters , which extends Costa’s concavity inequality for Shannon’s entropy power to the Rényi entropy power. In this paper, we give a condition of under which the concavity of the Rényi entropy power is valid. The condition contains Savaré-Toscani’s condition as a special case and much more cases. Precisely, the points satisfying Savaré-Toscani’s condition consist of a two-dimensional subset of , and the points satisfying the condition consist a three-dimensional subset of . Furthermore, gives the necessary and sufficient condition in a certain sense. Finally, the conditions are obtained with a systematic approach. 相似文献
7.
Galen Reeves 《Entropy (Basel, Switzerland)》2020,22(11)
This paper explores some applications of a two-moment inequality for the integral of the rth power of a function, where . The first contribution is an upper bound on the Rényi entropy of a random vector in terms of the two different moments. When one of the moments is the zeroth moment, these bounds recover previous results based on maximum entropy distributions under a single moment constraint. More generally, evaluation of the bound with two carefully chosen nonzero moments can lead to significant improvements with a modest increase in complexity. The second contribution is a method for upper bounding mutual information in terms of certain integrals with respect to the variance of the conditional density. The bounds have a number of useful properties arising from the connection with variance decompositions. 相似文献
8.
Michael J. W. Hall 《Entropy (Basel, Switzerland)》2022,24(11)
An uncertainty relation for the Rényi entropies of conjugate quantum observables is used to obtain a strong Heisenberg limit of the form , bounding the root mean square error of any estimate of a random optical phase shift in terms of average photon number, where is maximised for non-Shannon entropies. Related simple yet strong uncertainty relations linking phase uncertainty to the photon number distribution, such as , are also obtained. These results are significantly strengthened via upper and lower bounds on the Rényi mutual information of quantum communication channels, related to asymmetry and convolution, and applied to the estimation (with prior information) of unitary shift parameters such as rotation angle and time, and to obtain strong bounds on measures of coherence. Sharper Rényi entropic uncertainty relations are also obtained, including time-energy uncertainty relations for Hamiltonians with discrete spectra. In the latter case almost-periodic Rényi entropies are introduced for nonperiodic systems. 相似文献
9.
Belavkin–Staszewski relative entropy can naturally characterize the effects of the possible noncommutativity of quantum states. In this paper, two new conditional entropy terms and four new mutual information terms are first defined by replacing quantum relative entropy with Belavkin–Staszewski relative entropy. Next, their basic properties are investigated, especially in classical-quantum settings. In particular, we show the weak concavity of the Belavkin–Staszewski conditional entropy and obtain the chain rule for the Belavkin–Staszewski mutual information. Finally, the subadditivity of the Belavkin–Staszewski relative entropy is established, i.e., the Belavkin–Staszewski relative entropy of a joint system is less than the sum of that of its corresponding subsystems with the help of some multiplicative and additive factors. Meanwhile, we also provide a certain subadditivity of the geometric Rényi relative entropy. 相似文献
10.
Florio M. Ciaglia Fabio Di Cosmo Alberto Ibort Giuseppe Marmo 《Entropy (Basel, Switzerland)》2020,22(11)
The evolution of states of the composition of classical and quantum systems in the groupoid formalism for physical theories introduced recently is discussed. It is shown that the notion of a classical system, in the sense of Birkhoff and von Neumann, is equivalent, in the case of systems with a countable number of outputs, to a totally disconnected groupoid with Abelian von Neumann algebra. The impossibility of evolving a separable state of a composite system made up of a classical and a quantum one into an entangled state by means of a unitary evolution is proven in accordance with Raggio’s theorem, which is extended to include a new family of separable states corresponding to the composition of a system with a totally disconnected space of outcomes and a quantum one. 相似文献
11.
Hai Liu Changgen Peng Youliang Tian Shigong Long Feng Tian Zhenqiang Wu 《Entropy (Basel, Switzerland)》2022,24(3)
The existing work has conducted in-depth research and analysis on global differential privacy (GDP) and local differential privacy (LDP) based on information theory. However, the data privacy preserving community does not systematically review and analyze GDP and LDP based on the information-theoretic channel model. To this end, we systematically reviewed GDP and LDP from the perspective of the information-theoretic channel in this survey. First, we presented the privacy threat model under information-theoretic channel. Second, we described and compared the information-theoretic channel models of GDP and LDP. Third, we summarized and analyzed definitions, privacy-utility metrics, properties, and mechanisms of GDP and LDP under their channel models. Finally, we discussed the open problems of GDP and LDP based on different types of information-theoretic channel models according to the above systematic review. Our main contribution provides a systematic survey of channel models, definitions, privacy-utility metrics, properties, and mechanisms for GDP and LDP from the perspective of information-theoretic channel and surveys the differential privacy synthetic data generation application using generative adversarial network and federated learning, respectively. Our work is helpful for systematically understanding the privacy threat model, definitions, privacy-utility metrics, properties, and mechanisms of GDP and LDP from the perspective of information-theoretic channel and promotes in-depth research and analysis of GDP and LDP based on different types of information-theoretic channel models. 相似文献
12.
Let , , be the noise operator acting on functions on the boolean cube . Let f be a distribution on and let . We prove tight Mrs. Gerber-type results for the second Rényi entropy of which take into account the value of the Rényi entropy of f. For a general function f on we prove tight hypercontractive inequalities for the norm of which take into account the ratio between and norms of f. 相似文献
13.
We give bounds on the difference between the weighted arithmetic mean and the weighted geometric mean. These imply refined Young inequalities and the reverses of the Young inequality. We also studied some properties on the difference between the weighted arithmetic mean and the weighted geometric mean. Applying the newly obtained inequalities, we show some results on the Tsallis divergence, the Rényi divergence, the Jeffreys–Tsallis divergence and the Jensen–Shannon–Tsallis divergence. 相似文献
14.
It is shown that the hallmark quantum phenomenon of contextuality is present in classical statistical mechanics (CSM). It is first shown that the occurrence of contextuality is equivalent to there being observables that can differentiate between pure and mixed states. CSM is formulated in the formalism of quantum mechanics (FQM), a formulation commonly known as the Koopman–von Neumann formulation (KvN). In KvN, one can then show that such a differentiation between mixed and pure states is possible. As contextuality is a probabilistic phenomenon and as it is exhibited in both classical physics and ordinary quantum mechanics (OQM), it is concluded that the foundational issues regarding quantum mechanics are really issues regarding the foundations of probability. 相似文献
15.
Sergio Verdú 《Entropy (Basel, Switzerland)》2021,23(2)
Over the last six decades, the representation of error exponent functions for data transmission through noisy channels at rates below capacity has seen three distinct approaches: (1) Through Gallager’s functions (with and without cost constraints); (2) large deviations form, in terms of conditional relative entropy and mutual information; (3) through the -mutual information and the Augustin–Csiszár mutual information of order derived from the Rényi divergence. While a fairly complete picture has emerged in the absence of cost constraints, there have remained gaps in the interrelationships between the three approaches in the general case of cost-constrained encoding. Furthermore, no systematic approach has been proposed to solve the attendant optimization problems by exploiting the specific structure of the information functions. This paper closes those gaps and proposes a simple method to maximize Augustin–Csiszár mutual information of order under cost constraints by means of the maximization of the -mutual information subject to an exponential average constraint. 相似文献
16.
Ahmed Z. Afify Ahmed M. Gemeay Nada M. Alfaer Gauss M. Cordeiro Eslam H. Hafez 《Entropy (Basel, Switzerland)》2022,24(7)
We introduce here a new distribution called the power-modified Kies-exponential (PMKE) distribution and derive some of its mathematical properties. Its hazard function can be bathtub-shaped, increasing, or decreasing. Its parameters are estimated by seven classical methods. Further, Bayesian estimation, under square error, general entropy, and Linex loss functions are adopted to estimate the parameters. Simulation results are provided to investigate the behavior of these estimators. The estimation methods are sorted, based on partial and overall ranks, to determine the best estimation approach for the model parameters. The proposed distribution can be used to model a real-life turbocharger dataset, as compared with 24 extensions of the exponential distribution. 相似文献
17.
Rongyan Zhou Jianfeng Chen Weijie Tan Qingli Yan Chang Cai 《Entropy (Basel, Switzerland)》2021,23(11)
Sensor placement is an important factor that may significantly affect the localization performance of a sensor network. This paper investigates the sensor placement optimization problem in three-dimensional (3D) space for angle of arrival (AOA) target localization with Gaussian priors. We first show that under the A-optimality criterion, the optimization problem can be transferred to be a diagonalizing process on the AOA-based Fisher information matrix (FIM). Secondly, we prove that the FIM follows the invariance property of the 3D rotation, and the Gaussian covariance matrix of the FIM can be diagonalized via 3D rotation. Based on this finding, an optimal sensor placement method using 3D rotation was created for when prior information exists as to the target location. Finally, several simulations were carried out to demonstrate the effectiveness of the proposed method. Compared with the existing methods, the mean squared error (MSE) of the maximum a posteriori (MAP) estimation using the proposed method is lower by at least when the number of sensors is between 3 and 6, while the estimation bias remains very close to zero (smaller than 0.15 m). 相似文献
18.
Frank Nielsen 《Entropy (Basel, Switzerland)》2021,23(4)
We generalize the Jensen-Shannon divergence and the Jensen-Shannon diversity index by considering a variational definition with respect to a generic mean, thereby extending the notion of Sibson’s information radius. The variational definition applies to any arbitrary distance and yields a new way to define a Jensen-Shannon symmetrization of distances. When the variational optimization is further constrained to belong to prescribed families of probability measures, we get relative Jensen-Shannon divergences and their equivalent Jensen-Shannon symmetrizations of distances that generalize the concept of information projections. Finally, we touch upon applications of these variational Jensen-Shannon divergences and diversity indices to clustering and quantization tasks of probability measures, including statistical mixtures. 相似文献
19.
In this paper, we focus on extended informational measures based on a convex function : entropies, extended Fisher information, and generalized moments. Both the generalization of the Fisher information and the moments rely on the definition of an escort distribution linked to the (entropic) functional . We revisit the usual maximum entropy principle—more precisely its inverse problem, starting from the distribution and constraints, which leads to the introduction of state-dependent -entropies. Then, we examine interrelations between the extended informational measures and generalize relationships such the Cramér–Rao inequality and the de Bruijn identity in this broader context. In this particular framework, the maximum entropy distributions play a central role. Of course, all the results derived in the paper include the usual ones as special cases. 相似文献