首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A solid‐state pH sensor was fabricated using a transparent conductive titanium oxide film on a glass substrate. The coating of the glass substrate was achieved by a novel simple chemical vapor deposition (CVD) procedure. The sensor slope was found to increase as the temperature of the solution was increased. The performance of the sensor was investigated in the pH range from 2.2 to 11.19. The E‐pH curve is linear with slope of 0.054 V at 298.15 K. This value is closed to the theoretical value 2.303RT/F (0.059 V at 298.15). The standard potential of this electrode, E°, is computed as 177.58 mV with respect to the SCE as reference electrode. Results obtained by the suggested sensor compares very well with conventional pH electrodes where the square of the correlation coefficient was 0.998. This electrode can be used as an indicator electrode in potentiometric acid‐base titration. This electrode behaves reversibly and responds to the oxide ion concentration in molten NaNO3. K2Cr2O7 was potentiometrically titrated with Na2O2 and K2CO3 as titrants in molten NaNO3 at 350°C, using the above mentioned indicator electrodes. An acidity/basicity scale of the oxyanions was established in molten NaNO3 at 350°C.  相似文献   

2.
Hexacyanoferrate(II)-sensing electrodes were prepared by mixing Ag2S and Ag4Fe (CN)6. The 6:1 Ag2S/Ag4Fe (CN)6 provided the best potentiometric response and speed of response. The log concentration vs. potential curves were linear with Nernstian slope (14.8 mV/decade) over the range 10?1-10?6 M hexacyanoferrate (II) at pH 7.00 with constant ionic strength. Interferences included iodide, sulfide and bromide. This electrode was used as indicator in potentiometric titrations of hexacyanoferrate (II).  相似文献   

3.
Three glass electrodes covered with Co-cobaltite/SnO2:F (to obtain conducting glass electrodes) modified with p-Ni-tetraaminophenylporphyrin are described. In one electrode the porphyrin was absorbed on the electrode surface at room temperature, in another the porphyrin was electropolymerized on the electrode surface by cyclic voltammetry, and in the third the bare electrode was immersed in DMF containing the porphyrin and refluxed 6?h at 150°C. The three electrodes were tested as electrocatalysts for the oxidation of hydrazine and as potentiometric sensors of this chemical. The electrode modified by refluxing showed good electrocatalytic behavior as well as a linear relationship between its open circuit potential and the concentration of hydrazine in a concentration range from 0.16 to 12?µM, with fast response. These characteristics indicate that the conducting glass electrode of Co-cobaltite/SnO2:F covered with p-Ni-tetraaminophenylporphyrin by the reflux method is a good potentiometric sensor of hydrazine. The active site is probably the ligand that changes its electron density by formation of a supramolecular system.  相似文献   

4.
Room temperature ionic liquids (RTILs), 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate, [bmim]BF4, and multiwalled carbon nanotubes (MWCNTs) were used for improvement of a praseodymium carbon paste ion selective sensor response. [bmim]BF4 can be a better binder than mineral oils. MWCNTs have a good conductivity which helps the transduction of the signal in carbon paste electrode. The characteristics of these electrodes as potentiometric sensors were evaluated and compared with PVC membrane sensor. The results indicate that potentiometric sensor constructed with ionic liquid shows an increase in performance in terms of Nernstian slope, selectivity, response time, and response stability compared to Pr(III) PVC membrane sensor.  相似文献   

5.
Solid-contact chromium-selective film electrodes were prepared on the basis of titanium diselenide and titanium ditelluride intercalated with chromium. It was found that the titanium diselenide–based electrode with the lowest concentration of the intercalant (Cr0.1TiSe2) exhibits the best properties and provides the determination of 5 × 10–5–1 × 100M chromium(III) in the pH range 2.75–4.7. The slope of the electrode function for all chromium-selective electrodes depends on the pH of the solution and is close to the theoretical slope for the singly charged Cr(OH)+ 2 ion. It was demonstrated that chromium-selective electrodes can be used as indicator electrodes in determining chromium(III) by direct titration with the potentiometric detection of the titration end-point using EDTA and KMnO4as titrants.  相似文献   

6.
《Electroanalysis》2005,17(17):1534-1539
The construction, performance, and applications of a novel ytterbium(III) sensor based on N‐(2‐pyridyl)‐N′‐(2‐methoxyphenyl)‐thiourea (PMT), as an excellent carrier, in plasticized poly(vinyl chloride) PVC matrix, is described. The influences of membrane composition and pH on the potentiometric response of the sensor were investigated. The sensor exhibits a nice Nernstian response for Yb(III) ion over a wide concentration range of 4 decades of concentration (1.0×10?6–1.0×10?2 M), and a detection limit of 5.0×10?7 M. The response time of the electrodes is between 8 and 10 s, depending on the concentration of ytterbium(III) ions. The proposed sensor can be used for about 8 weeks without any considerable divergence in potential. The sensor revealed very good selectivity for Yb(III) in the presence of several metal ions. The best performance was observed for the membrane containing; 30% PVC, 59% o‐nitrophenyloctyl ether (NPOE) as solvent mediator, 7% PMT, and 4% sodium tetraphenyl borate (NaTPB). It was successfully applied as indicator electrodes in the potentiometric titration of Yb(III) with EDTA and for the determination of fluoride ion in two mouth wash formulations. The proposed La(III) sensor was found to work well under laboratory conditions. It was also used as an indicator electrode in titration of a 1.0×10?4 M of Yb(III) with a standard EDTA solution (1.0×10?2 M). It was also used for determination of Yb(III) ion in Xenotime .  相似文献   

7.
A novel potentiometric membrane electrode with selective response to L-glutamate over the 2 × 10-4–1.3 × 10-2 M concentration range is constructed by immobilizing slices of yellow squash tissue at a CO2 gas sensor. This system represents the first successful use of intact plant materials as biocatalysts in the construction of bioselective potentiometric membrane electrodes; as a result, the range of future possibilities may be greatly extended. The glutamate-sensing electrode combines excellent selectivity characteristics over some 25 possible interferences tested, good reproducibility, and a useful lifetime of 7 days in aqueous samples.  相似文献   

8.
Perchlorate-selective liquid membrane electrodes were developed by incorporating the ion-pair complexes of perchlorate with brucine, cinchonidine, emetine and benzyldimethyltetradecylammonium chloride (zephiramine) in nitrobenzene. The electrodes, which respond to perchlorate ion over the concentration range 1.0–5.0 × 10?4 M ClO?4, have a fast response and wide pH range. The zephiramine-perchlorate electrode was the best in terms of its fast response, wide pH range and high reproducibility of potentials. Most common inorganic and organic anions, except permanganate, do not cause significant interference. Electrodes based on brucine-, emetine- and zephiramine-perchlorate were successfully employed for the direct potentiometric determination of perchlorate in the presence of halides, sulphate, nitrate and chlorate. The cinchonidine-perchlorate electrode showed comparatively poor selectivity.  相似文献   

9.
In this paper, a new highly sensitive potentiometric pH electrode is proposed based on the solid-state PbO2 film electrodeposited on carbon ceramic electrode (CCE). Two different crystal structures of PbO2, α and β were examined and the similar results were obtained. Moreover, the experimental results obtained for the proposed pH sensor and a conventional glass pH electrode were in good agreement. The electromotive force (emf) signal between the pH-sensitive PbO2-coated CCE and SCE reference electrode was linear over the pH range of 1.5–12.5. Near-Nernstian slopes of −64.82 and −57.85 mV/pH unit were obtained for α- and β-PbO2 electrodes, respectively. The interferences of some mono-valence and multi-valence ions on potentiometric response of the sensor were studied. The proposed pH sensor displayed high ion selectivity with respect to K+, Na+, Ca2+, and Li+, with log values around −12 and has a working lifetime of about 30 days. Key parameters important for the pH sensor performance, including kind of PbO2 film, selectivity, response time, stability, and reproducibility, have been characterized. The proposed electrode showed a good efficiency for direct pH-metry after calibration and pH-metric titrations without calibration step. The response time was about 1 s in acidic medium and less than 30 s in alkaline solutions. The pH values of complex matrix samples such as fruit juices measured by the proposed sensor and a conventional glass pH electrode were in good agreement.  相似文献   

10.
Mahajan RK  Kaur I  Lobana TS 《Talanta》2003,59(1):101-105
A new ion-selective PVC membrane electrode based on salicylaldehyde thiosemicarbazone as an ionophore is developed successfully as sensor for mercury(II) ions. The electrode shows excellent potentiometric response characteristics and displays a linear log[Hg2+] versus EMF response over a wide concentration range of 1.778×10−6-1.0×10−1 M with Nernstian slope of 29 mV per decade with the detection limit of 1.0×10−6 M. The response time of the electrode is less than 30 s and the membrane electrode operates well in the pH range of 1.0-3.0. The lifetime of the sensor is about 2 months. The electrode shows better selectivity towards Hg2+ ions in comparison with the alkali, alkaline and some heavy metal ions; most of these metal ions do not show significant interference (KPotHg,M values of the order of 10−3-10−4). The present sensor showed comparable or even better performance vis-à-vis similar PVC based ion-selective electrodes reported in literature. The sensor was also applied as an indicator electrode for potentiometric titration of Hg2+ions with I and Cr2O72−.  相似文献   

11.
Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.14,7.110,13]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd2+ ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58 × 10−9 mol L−1, Nernstian slope of 29.6 mV decade−1 of activity. The sensor was found to be independent of pH in the range 2.5–8.5. The sensor showed a fast response time of 10 s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd2+ ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd2+ ion with EDTA.  相似文献   

12.
The potentiometric behavior of coated wire electrodes based on dodecylbenzenesulfonate-doped polypyrrole (PPy-DBS) and hyamine as ion exchanger was investigated. The PPy-DBS was prepared electrochemically by anodic polymerization of pyrrole in the presence of DBS ions in aqueous solution and used as ionophore for construction of the sensor. Two types of coated wire electrodes made of PVC-PPy-DBS and PVC-Hyamine-DBS, plasticized with ortho-nitrophenyloctylether (o-NPOE) showed the Nernstian behavior (with respective calibration slopes of about 58 and 60 mV per decade) over the DBS concentration range of 3.0×10−6 to 1.1×10−3 M and 5.0×10−6 to 1.3×10−3 M, respectively. The influence of membrane composition, type of plasticizer, and pH of test solution on the potentiometric responses of the two electrodes was investigated. The potentiometric response was independent of the pH of test solution in the range 3-10. The response time of electrodes was fast (10 s for both types of electrode), and they can be used for at least 3 months without any significant change in potential. The proposed electrodes revealed very good selectivity for DBS ion over diverse inorganic and organic anions. The potentiometric selectivity coefficients for the PPy-DBS based electrode revealed a significant improvement as compared to the electrode made by conventional Hyamine-DBS (Hya-DBS) anion exchanger. The proposed electrode was used for determination of DBS ion in some commercial detergents. The results of the potentiometric determinations were in satisfactory agreement with those obtained by a standard method (two-phase titration).  相似文献   

13.
Electrochemical characterization and application of nickel ruthenium dioxide (Ni-RuO2) as a pH sensor for the determination of petroleum oil acid number is described. The sensor consists of RuCl3 thermally decomposed onto the upper side of a polycrystalline nickel electrode at 400 °C in an open furnace. The advantages of the sensor are: (i) easy preparation, (ii) fast response in a large pH range, (iii) high physical and chemical stability, and (iv) excellent reproducibility as determined by the reproducible linear variation of charge transfer resistance (Rct) as a function of overpotential (η) obtained by electrochemical impedance spectroscopy (EIS), and the Nernstian slope of the electrode potential in a wide range of pH (1.5–12.5) obtained by potentiometric measurements. The potentiometric selectivity coefficients of the sensor toward some anions and cations were evaluated in aqueous solution. The characterized Ni-RuO2 pH sensor was successfully tested for the determination of petroleum oil acid number.  相似文献   

14.
For the purpose of employing an inexpensive alternative to conventional platinum for use by upper-division as well as graduate students, polyaniline (PANI)-deposited stainless steel (SS) and mild steel (MS) electrodes are described as indicator electrodes for potentiometry and potentiometric titrations of some redox reactions. PANI is deposited on the nonplatinum metal by electrochemical polymerization of aniline using cyclic voltammetric technique. Alternate methods to produce the PANI electrodes are also suggested. The electrodes respond to concentration changes of hydroquinone (H2O), Fe2+/Fe3+, and [Fe(CN)6]4–/[Fe(CN)6]3– in HCL electrolytes, and the potential variation with concentration follows the Nernst relationship. Under identical experimental conditions, the response time of the PANI/SS, PANI/MS, and Pt electrodes for a change in concentration of Fe3+ in a mixed electrolyte of Fe2+ and Fe3+ is found to be about 20 s. Neutralization reaction of HC1 versus NaOH, redox reaction of Fe2+ and Ce4+, and redox reaction of Fe2+ and KMnO4 in several concentrations in the range from 1 mM to 100 mM are carried out using the PANI/SS, PANI/MS, and Pt indicator electrodes. The performance of the PANI/SS and PANI/MS electrodes is as good as that of the Pt at all concentration levels of the titrations. The electrodes can be reused for several titrations by storing them in an acid electrolyte for a long period of time. Thus, the conventional inert Pt or Au can be substituted for by using a PANI-deposited nonplatinum reactive metal as a potentiometric sensor for redox titrations.  相似文献   

15.
The feasibility of a newly synthesized Rh(III) complex, Rh[(trpy)(bpy)Cl](PF6)2, as a novel ionophore for the preparation of anion-selective polymeric membrane electrodes was tested. The ionophore exhibited anti-Hofmeister behavior with enhanced potentiometric selectivity toward thiocyanate ion compared to other anions. The influence of some experimental parameters such as membrane composition, nature and amount of plasticizer and additive and concentration of internal solution on the potential response of the SCN sensor were investigated. The electrode exhibits a Nernstian response for SCN over a wide concentration range (1.0 × 10−5 to 1.0 × 10−1 M) with a slope −58.7 ± 0.5 mV per decade and a detection limit of 4.0 × 10−6 M (0.23 ppm). It could be used in a pH range of 3.0-8.0 and has a fast response time of about 15 s. The proposed sensor was used for the determination of thiocyanate ions in real samples such as urine and saliva of smokers and nonsmokers and, as an indicator electrode, in potentiometric titrations of SCN ion.  相似文献   

16.
A solid-state potentiometric sensor using yttria-stabilized zirconia (YSZ) as a solid electrolyte and oxide electrodes has been developed for selective CO detection. At 450oC, the YSZ-based sensor using CuCrFeO4 sensing-electrode (SE) was found to have similar gas sensing characteristic with the sensor using CoCrFeO4-SE, except toward CO. When both SEs was paired on a YSZ tube, the responses to various gases except for CO could be cancelled out for the resulting combined-SEs sensor. Thus, this sensor could generate a sensitive and selective response to CO at 450oC even under humid conditions.  相似文献   

17.
《Electroanalysis》2017,29(2):566-577
Two novel carbon paste electrodes based on gentamicin‐reineckate (GNS‐RN)/multiwall carbon nanotubes (MWCNTs)/sodium tetraphenyl borate (NaTPB) or potassium tetraphenylborate (KTPB) for potentiometric determination of gentamicin sulfate were constructed. Our endeavors of lowering the detection limit for gentamicin ion‐selective electrodes were described. The paper focused on gentamicin carbon paste electrodes based on GNS‐RN as electroactive material, o ‐nitrophenyloctyl ether (o ‐NPOE) as plasticizer and incorporation of MWCNTs and lipophilic anionic additives (NaTPB and KTPB) which lower the detection limit of the electrodes showing best results for determination of gentamicin ion. The characteristics of the electrodes, GNS‐RN+NaTPB+MWCNTs (sensor 1) and GNS‐RN+KTPB+ MWCNTs (sensor 2), were measured, showing favorable features as they provided measurements of the potential with near‐Nernstian slopes of 29.6±0.3 and 29.1±0.3 mV/decade over the concentration range of 1.0×10−6–1.0×10−2 mol L−1 and pH ranges 3.0–8.2 and 3.0–8.0 in short response times (6.5 sec). Importantly, the electrodes had low detection limits of 3.0×10−7and 3.4×10−7 mol L−1 for the two sensors, respectively. The sensors showed high selectivity for gentamicin ion with respect to a large number of interfering species. The electrodes were successfully applied for the potentiometric determination of GNS ions in pure state, pharmaceutical preparations and human urine with high accuracy and precision. The results of this study were compared with some previously published data using other analytical methods.  相似文献   

18.
An all solid state potentiometric sensor using anthracene thiourea derivative as ionophore was developed. It exhibited a near‐Nernstian slope of 30.8±1.0 mV/decade of activity for HPO42? ions in the concentration range of 1.0×10?7–1.0×10?3 M at pH 7.4. It displayed excellent selectivity for monohydrogen phosphate over other anions and the selectivity sequence was determined as HPO42?>SO42?>Cl?>NO3?>OAc?>I?>ClO4?. The developed sensor was evaluated for the analysis of monohydrogen phosphate ions in a standard reference material (SRM 1548) as well as in the potentiometric titration of phosphate ions with a barium chloride solution.  相似文献   

19.
Polymer compositions based on the ionic liquid tetradecylammonium triethylammonium-closododecaborate (TTCD) are proposed as the main components of membranes of potentiometric sensors (ion-selective electrodes) for determining ions [B12H11N(C2H5)3]. Two types of polymer compositions are considered: conventional, polyvinyl chloride (PVC)-liquid ion-exchanger (solution of TTCD in o-nitrophenyl octyl ether) and another, PVC-TTCD (ionophore-plasticizer). The optimal composition of membranes for both types of electrodes are proposed, and their main electroanalytical parameters, such as selectivity, effect of pH, range of linear response, reproducibility, and stability of potential, were measured. A comparative analysis of the electroanalytical parameters of potentiometric sensors with membranes of two types is given. The detection limits for the electrodes of types I and II are 9 × 10−7 and 4 × 10−7 M. It is shown that [B12H11N(C2H5)3] anions can be determined by potentiometric titration with indicator electrodes of different types.  相似文献   

20.
A half-oxidized platinum electrode modified with a monolayer of ferrocene is proposed as a potentiometric sensor for l-ascorbic acid in an aqueous glycine buffer pH 2.2. The ferrocene was covalently attached to the surface by a silane carbon chain. The potentials of 15 electrodes were measured and a slope of (50 ± 8.8) mV per decade change in concentration of ascorbic acid was obtained over the concentration range 10?3-10?6 M. Recovery experiments with pure l-ascorbic acid solutions showed a relative standard deviation of 1.9%, in the analysis of fresh orange juice, the relative standard deviation was 6.1%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号