首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
We have developed a matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) based technique for the detection of intact proteins directly from immobilized pH gradient gels (IPGs). The use of this technique to visualize proteins from IPGs was explored in this study. Whole cell Escherichia coli extracts of various loadings were separated on IPGs. These IPGs were processed to remove contaminants and to achieve matrix/analyte cocrystallization on the surface of the gel. Mass spectra were acquired by scanning the surface of the gel and were assimilated into a "virtual" two dimensional (2-D) gel. This virtual 2-D gel is analogous to a "classical" 2-D gel, except that the molecular weight information is acquired by mass spectrometry rather than by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). This mass spectrometry (MS) based technology exemplifies a number of desirable characteristics, some of which are not attainable with classical two-dimensional electrophoresis (2-DE). These include high sensitivity, high reproducibility, and an inherently higher resolution and mass accuracy than 2-D gels. Furthermore, there is a difference in selectivity exhibited between virtual 2-D gels and classical 2-D gels, as a number of proteins are visible in the virtual gel image that are not present in the stained gels and vice versa. In this report, virtual 2-D gels will be compared to classical 2-D gels to illustrate these features.  相似文献   

2.
Virtual and experimental 2DE coupled with ESI LC‐MS/MS was introduced to obtain better representation of the information about human proteome. The proteins from HEPG2 cells and human blood plasma were run by 2DE. After staining and protein spot identification by MALDI‐TOF MS, the protein maps were generated. The experimental physicochemical parameters (pI/Mw) of the proteoforms further detected by ESI LC‐MS/MS in these spots were obtained. Next, the theoretical pI and Mw of identified proteins were calculated using program Compute pI/Mw ( http://web.expasy.org/compute_pi/pi_tool‐doc.html ). Accordingly, the relationship between theoretical and experimental parameters was analyzed, and the correlation plots were built. Additionally, virtual/experimental information about different protein species/proteoforms from the same genes was extracted. As it was revealed from the plots, the major proteoforms detected in HepG2 cell line have pI/Mw parameters similar to theoretical values. In opposite, the minor protein species have mainly very different from theoretical pI and Mw parameters. A similar situation was observed in plasma in much higher degree. It means that minor protein species are heavily modified in cell and even more in plasma proteome.  相似文献   

3.
Two-dimensional (2-D) gel electrophoresis is often used in toxicologic and metabolic studies to assess treatment- or stage-specific changes in protein synthesis, degradation or posttranslational modification. When combined with cell fractionation studies the detectability of low abundance proteins is enhanced, and changes in subcellular distribution of proteins can also be monitored. Detergent fractionation is a simpler alternative to differential pelleting, which partitions cellular constituents into functionally distinct populations while preserving cytoskeletal integrity. We defined and characterized a differential detergent fractionation (DDF) protocol to enable protein dynamics in cytoskeletal and noncytoskeletal compartments of isolated hepatocytes to be monitored simultaneously. Rat hepatocytes were maintained in suspension culture and fractionated by sequential extraction with detergentcontaining buffers (digitonin/EDTA, Triton/EDTA, Tween/deoxycholate). DDF reproducibly yielded four electrophoretically distinct fractions enriched in cytosolic, membrane-organelle, nuclear membrane and cytoskeletal-matrix markers, respectively. Immunoblotting with over 20 different antibodies corroborated the selectivity of fractionation and was used to characterize the distribution profiles of cytoskeletal (actin, tubulins, cytokeratins, vinculin, myosin, desmoplakins, fodrin, nuclear lamins) and noncytoskeletal proteins (heat-shock 70 proteins, glutathione-S-transferase, calpains, carbamoyl phosphate synthetase, etc.), as well as to identify spots in 2-D gels. Detergent buffers were compatible with equilibrium or nonequilibrium 2-D gel electrophoretic analysis. Extensive 2-D maps of acidic and basic proteins in each fraction were generated along with a tabular listing of Mr and pI. Thus, DDF reproducibly partitions hepatocytic proteins into functionally distinct cytoskeletal and noncytoskeletal compartments that are readily analyzed by 2-D gel electrophoresis. DDF is simple, applicable to use with other cell types or culture systems and is especially useful when biomaterial is limited (i.e., clinical studies).  相似文献   

4.
Righetti PG 《Electrophoresis》2004,25(14):2111-2127
An overview of about 100 years of bioanalysis is here disastrously attempted. The beginning of rigorous analytical systems can perhaps be traced back to the building and testing of the analytical ultracentrifuge by Svedberg and the apparatus for moving-boundary electrophoresis of Tiselius, both systems relying on expensive and hard to operate machines. In the sixties, Porath discovered porous beads for the determination of relative molecular mass (Mr) of proteins, based on the principle of molecular sieving. Concomitantly, Svensson and his pupil Vesterberg described a revolutionary principle for fractionating proteins in a nonisocratic environment, based on generation of stable pH gradients in an electric field, a technique that went down to history as isoelectric focusing (IEF). Polyacrylamide gel electrophoresis (PAGE), with the brilliant idea of discontinuous buffers, was brought to the limelight and in 1967, sodium dodecyl sulfate (SDS)-PAGE was described, permitting easy assessment of protein purity and reasonable measurements of Mr values of denatured polypeptide chains. By the mid seventies, another explosive concept was realized: orthogonal combination of two unrelated techniques, based on surface charge and mass fractionation, namely, two-dimensional (2-D) PAGE already in the very first papers by O'Farrell elaborated to its utmost sophistication. The eighties saw the systematic growth of 2-D PAGE, accompanied by systematic efforts to develop instrumentation for large-scale production of 2-D maps and computer evaluation for 2-D map analysis, based on the sophisticated algorithms adopted by astronomers for mapping stars in the sky. Another fundamental innovation in the field of IEF was the discovery of immobilized pH gradients (IPGs) that brought the much needed reproducibility in 2-D maps while allowing exquisite resolution in very narrow pH ranges. The nineties were definitely the decade of capillary zone electrophoresis, with the concomitant concept of automation and miniaturization in electrokinetic methodologies. Also 2-D map analysis witnessed a big revival, thanks to the adoption of IPGs for the first dimension. The enormous progress of mass spectrometry resulted in first reports on the analysis of macromolecules and the building of data bases on gene and protein banks. The third millennium is, perhaps, exasperating the concept of miniaturization at all costs, while not disdaining increasingly larger maps for 2-D analysis of complex protein mixtures.  相似文献   

5.
Efficient separation method is a crucial part of the process in which components of highly complex biological sample are identified and characterized. Based on the principles of recently newly established electrophoretic method called divergent flow IEF (DF IEF), we have tested the DF IEF instrument which is able to operate without the use of background carrier ampholytes. We have verified that during separation and focusing of sample consisting of high numbers of proteins (yeast lysate and wheat flour extract), the pH gradient of preparative DF IEF can be created by autofocusing of the sample components themselves without any addition of carrier ampholytes. In DF IEF, the proteins are separated, desalted and concentrated in one step. The fractions of yeast lysate sample, collected at the DF IEF output and subjected to gel IEF, contained the zones of proteins gradually covering the pI values from 3.7 to 8.5. In our experimental arrangement, the highest number of proteins has been found in fractions with pI values around 5.3 as detected by polyacrylamide gel IEF with CBB staining. During DF IEF, the selected protein bands have been concentrated up to 16.8‐fold.  相似文献   

6.
Fourteen new RuII–arene (p-cymene/benzene) complexes ( C1 – C14 ) have been synthesized by varying the N-terminal substituent in the furoylthiourea ligand and satisfactorily characterized by using analytical and spectroscopic techniques. Electrostatic potential maps predicted that the electronic effect of the substituents was mostly localized, with some influence seen on the labile chloride ligands. The structure–activity relationships of the Ru–p-cymene and Ru–benzene complexes showed opposite trends. All the complexes were found to be highly toxic towards IMR-32 cancer cells, with C5 (Ru–p-cymene complex containing C6H2(CH3)3 as N-terminal substituent) and C13 (Ru–benzene complex containing C6H4(CF3) as N-terminal substituent) showing the highest activity among each set of complexes, and hence they were chosen for further study. These complexes showed different behavior in aqueous solutions, and were also found to catalytically oxidize glutathione. They also promoted cell death by apoptosis and cell cycle arrest. Furthermore, the complexes showed good binding ability with the receptors Pim-1 kinase and vascular endothelial growth factor receptor 2, commonly overexpressed in cancer cells.  相似文献   

7.
Two-dimensional gel electrophoresis (2-DE) enables separation of complex mixtures of proteins on a single polyacrylamide gel according to isoelectric point, molecular weight, solubility, and relative abundance. For this reason, 2-DE together with mass spectrometry (MS) has become a key technology in proteome analysis. The introduction of immobilised pH gradients (IPGs) for isoelectric focusing of proteins affords improved reproducibility and permits full-scale proteome analyses to be undertaken. Whilst broad-range IPGs are useful for investigating simple proteomes (e.g. Mycoplasma genitalium) it is becoming clear that additional resolving power is needed for separating the more complex proteomes of eukaryotic organisms. The use of narrow-range and very narrow-range IPGs provides the means with which to dissect a complex proteome. We have compared very narrow-range IPGs (3.5-4.5L, 4-5L, 4.5-5.5L, 5-6L, and 5.5-6.7L) with broad- (3-10NL) and narrow-range IPGs (4-7L and 6-9L) for the visualisation of the human heart proteome. The superior ability of very narrow-range IPGs to separate different protein species and isoforms, compared with 3-10NL and 4-7L 2-D gels is demonstrated. The results are supported by MS identifications which further show that reduction of the number of comigrating protein species results in less ambiguous and more reliable database search results.  相似文献   

8.
High resolution two-dimensional (2-D) gel electrophoresis in combination with the blot overlay nucleotide binding assay was used to reveal low molecular weight GTP-binding proteins expressed by primary cultured, normal human keratinocytes. Forty one small GTP-binding proteins (30 isoelectric focusing, IEF; and 11 nonequilibrium pH gradient electrophoresis, NEPHGE) ranging in molecular weights from 18000 to 30000 and isoelectric points from 4.4 to 8.0 were detected and mapped in the master human keratinocyte database. Four GTP-binding proteins were identified by 2-D gel immunoblotting and these correspond to rap 1 and 2 and two forms of rab6. ras Proteins are most likely present in the [α32P]GTP 2-D gel blots but their levels may be too low to be detected by immunoblotting. Quantitative changes in the relative expression levels of [α32P]GTP-binding proteins in normal proliferating and simian virus 40 (SV40) transformed human keratinocytes (K 14) were determined by scintillation counting of the radioactive spots excised from the nitrocellulose blots. The results showed that thirteen of these proteins were not expressed in transformed K14 keratinocytes, implying that they may play a role in the maintenance of the normal cell phenotype.  相似文献   

9.
Fourteen low molecular mass UV absorbing ampholytes containing 1 or 2 weakly acidic and 1 or 2 weakly basic functional groups that best satisfy Rilbe's requirement for being good carrier ampholytes (ΔpKa = pKamonoanion ‒ pKamonocation < 2) were selected from a large group of commercially readily available ampholytes in a computational study using two software packages (ChemSketch and SPARC). Their electrophoretic mobilities were measured in 10 mM ionic strength BGEs covering the 2 < pH < 12 range. Using our Debye-Hückel and Onsager-Fuoss laws-based new software, AnglerFish (freeware, https://echmet.natur.cuni.cz/software/download ), the effective mobilities were recalculated to zero ionic strength from which the thermodynamic pKa values and limiting ionic mobilities of the ampholytes were directly calculated by Henderson-Hasselbalch equation-type nonlinear regression. The tabulated thermodynamic pKa values and limiting ionic mobilities of these ampholytes (pI markers) facilitate both the overall and the narrow-segment characterization of the pH gradients obtained in IEF in order to mitigate the errors of analyte ampholyte pI assignments caused by the usual (but rarely proven) assumption of pH gradient linearity. These thermodynamic pKa and limiting mobility values also enable the reality-based numeric simulation of the IEF process using, for example, Simul (freeware, https://echmet.natur.cuni.cz/software/download ).  相似文献   

10.
Ohlmeier S  Scharf C  Hecker M 《Electrophoresis》2000,21(17):3701-3709
The genomic sequence of Bacillus subtilis, which is the best studied Gram-positive bacterium, enabled us to obtain a theoretical two-dimensional (2-D) map, demonstrating that about one-third of this proteome has a theoretical alkaline isoelectric point (pI). This represents an important part of the entire proteome, which is not detectable in conventional 2-D gels (pH range 4-7). Sequence analysis revealed that 91% of the ribosomal proteins and a high amount of theoretical membrane proteins should be localized in the alkaline pH range requiring different protein extraction procedures. In order to find the pH range which gives the best resolution results for the alkaline proteins of B. subtilis, immobilized pH gradients (IPGs) with different pH ranges (pH 6-10, 6-11, 4-12, 9-12, and 3-10) were tested and optimized for IPG 4-12. Here we present a version of a first alkaline master 2-D gel for B. subtilis, which is a further complement of the already existing master gel (pH 4-7) in the Sub2D database. Almost 150 spots could be detected and 41 proteins have already been identified.  相似文献   

11.
The initial development steps of a native and powerful two-dimensional electrophoretic (2-D) method for the separation of platinum-proteins is described. Mild conditions were selected, particularly for the second dimension, e.g., avoiding buffer systems with platinophile N- or S-donor groups. Therefore, the separation reagents were checked if and at which concentration they can be used for this purpose. In the first dimension isoelectric focusing (IEF) was performed using immobilised pH gradients (IPGs). Native polyacrylamide gel electrophoresis (PAGE) was done in the second dimension. Detection of proteins was achieved via silverstaining. For the determination of platinum in the ultra-trace range, double focusing inductively coupled plasma mass spectrometry (HR-ICP-MS) was used. Autoradiography (191Pt tracer) will be done additionally in the future as a fast, powerful and elegant way of detecting the platinum carrying proteins after the second dimension.  相似文献   

12.
Electrochemical behavior of resazurin on HMDE in Britton-Robinson (B-R) buffers (pH 2.0–10.0) was studied using the square-wave voltammetry (SWV), square-wave adsorptive stripping voltammetry (SWAdSV), and cyclic voltammetry (CV) techniques. The voltammogram of resazurin in B-R buffer at pH < 4.0 exhibited two cathodic reduction peaks. The voltammetric peaks were obtained at −0.144 V (reversible) and −1.250 V (irreversible) at pH 3.2, and correspond to the reduction of resorufin to dihydroresorufin and to the catalytic hydrogen wave, respectively. At pH > 4.0, a new irreversible cathodic reduction peak, assigned to the protonation of N-oxide on the phenoxazin ring, was observed. Electrochemical parameters (I p/E p, I p/v, I p/pH, I p/t acc) of the compound were determined. From the voltammetric data, electrochemical reduction mechanisms for all peaks have been suggested. Maximum peak current for the reversible peak was obtained at pH 4.1. A linear relationship between the current and concentration was determined, and also the lowest detection limit was found as 3.25 × 10−8 mol L−1 and 1.98 × 10−10 mol L−1 for SWV and SWAdSV, respectively.  相似文献   

13.
A β-glucosidase (EC 3.2.1.21) from Flavobacterium meningosepticum has been purified and characterized. Purity was enhanced at least 530-fold from crude cell extract with 16.6% yield. The estimated molecular mass of the purified enzyme is 150 kDa by gel filtration and 78 kDa by SDS-PAGE. This dimeric enzyme has a pI = 9.0 and an optimal activity at pH 5.0 and temperature of 50 °C. Divalent metal ions (Hg2+, Cu2+, Ca2+, Mg2+) and EDTA have negligible effect on the enzyme activity. The enzyme exhibited a high specificity on the glycon portion of aryl-β-D -glycosides. NMR spectroscopy revealed the enzyme catalyzed hydrolysis of p-nitrophenyl-β-D -glucopyranoside with the retention of anomeric configuration, indicating that a double displacement mechanism was involved. A preliminary study of the Bronsted relationship showed a concave-downward plot, which is consistent with the two-step mechanism.  相似文献   

14.
The influence of some amino acids—alanine, glycine, valine, glutamine, histidine, phenylalanine, and tryptophan—on the swelling behavior of acrylamide (AAm) hydrogel prepared by γ-radiation was investigated. Swelling experiments of AAm hydrogel were made in the universal buffer solutions and the amino acid solutions at certain pHs at 37°C. These selected pH values were pK1, pK2 and isoelectric point (pI) values such as ionization of α-carboxyl groups, ionization of α-amino groups, and the pIs of the amino acids, respectively. The swelling of AAm hydrogel increased when pH values of solutions were increased. The value of equilibrium swelling of AAm hydrogel in the solution of universal buffer was 880% at pH 10.0, whereas it was 670% at pH 2.0. The values of equilibrium swelling of AAm hydrogel in amino acid solutions were between 830 and 965% at pH 10.0, whereas they were between 635 and 775% at pH 2.0. The rate constant of swelling, initial swelling rate, theoretical maximum swelling, diffusional exponent, network parameter, and diffusion coefficient were calculated by swelling kinetics. Diffusions of the amino acid solutions into the hydrogel were generally found as non-Fickian in character. The diffusion coefficients of the hydrogel were between 0.91 × 10−6 and 2.41 × 10−6 cm2/s.  相似文献   

15.
In this study, we present a novel amino‐reactive fluorescence marker (referred to as UR‐431), which is well suited for electrophoretic techniques. A main feature of this marker is its weakly basic behavior when conjugated to analytes. Labeled primary amines exhibit a positive net charge and accordingly a cathodic mobility below a pH of 2.4. The label features a pH‐independent fluorescence emission and is thus very interesting for electrophoretic applications such as IEF. The absorption maximum of this yellow daylight chromophore is at 431 nm, whereas fluorescence emission peaks at 537 nm (quantum yield≈0.1). The label was successfully conjugated to amines, peptides and proteins and separated via CE and MCE. The on‐chip detection limit of labeled lysine using a mercury‐lamp‐based fluorescence microscope was determined as 12 nM. An important feature of the new label is that it effects only a subtle change of the pI of proteins compared with common anionic labels, e.g. FITC. pI values of proteins were investigated by comparing native proteins and labeled proteins in CIEF. UR‐431 was also applied to sensitive detection of amines and peptides in MCE.  相似文献   

16.
The values of the second dissociation constant, pK 2, and related thermodynamic quantities of 3-[N,N-bis (2-hydroxyethyl)amino]-2-hydroxypropanesulfonic acid (DIPSO) have already been reported over the temperature range 5 to 55 °C including 37 °C. This paper reports the pH values of four NaCl-free buffer solutions and four buffer composition containing NaCl salt at I=0.16 mol⋅kg−1. Conventional pa H values are reported for all eight buffer solutions. The operational pH values have been calculated for four buffer solutions recommended as pH standards, at 25 and 37 °C after correcting the liquid junction potentials with the flowing junction cell.  相似文献   

17.
From the press-residue of the fresh root tuber of Trichosanthes kirilowii Maim (Cucurbitaceae), a new ribosome-inactivating protein (RIP), trichobitacin, was isolated. It has the activity of RNA N-glycosidase and can inhibit the growth of human placental trophoblastic cells. Its molecular weight is 27,228 Da (ES-MS) and pI 9.6. It is a single chain basic RIP. Its amino acid composition was determined. It is a new RIP. It consists of 0.7~0.9% galactose and may be a glycoprotein. Its N- and C-terminal amino acid is Asp and Ala, respectively. Its N-terminal preliminary amino acid sequence has been determined.  相似文献   

18.
N-terminal Cys modification has been intensively studied to produce homogeneous bioconjugates essentially through two modes of reaction: reversible modification with the equilibrium shifted towards the formation of the desired conjugate or stable and irreversible conjugates. Herein, we report a new method of N-terminal cysteine modification using O-salicylaldehyde esters (OSAEs) through fast conjugation and irreversible deconjugation. These reagents can rapidly react with N-terminal Cys at low-micromolar concentration to form thiazolidines with subsequent hydrolysis of the ester moiety to the phenolic derivative. These phenolic thiazolidines can be hydrolyzed at acidic pH (≈4.5) to recover the intact N-terminal Cys. Bioconjugation reactions using OSAEs offer controlled reversibility to as act as a protecting group for N-terminal cysteines, allowing the modification of in-chain residues without perturbing the N-terminal Cys, which can then be deprotected and used as a conjugation site.  相似文献   

19.
In this article, an approach has been developed for the analysis of some small peptides with similar pI values by CE‐ESI‐MS based on the online concentration strategy of dynamic pH junction. The factors affected on the separation, detection and online enrichment, such as BGE, injection pressure, sheath flow liquid and separation voltage have been investigated in detail. Under the optimum conditions, i.e. using 0.5 mol/L formic acid (pH 2.15) as the BGE, preparing the sample in 50 mM ammonium acetate solution (pH 7.5), 50 mbar of injection pressure for 300 s, using 7.5 mM of acetic acid in methanol–water (80% v/v) solution as the sheath flow liquid and 20 kV as the separation voltage, four peptides with similar pI values, such as L ‐Ala‐L ‐Ala (pI=5.57), L ‐Leu‐D ‐Leu (pI=5.52), Gly‐D ‐Phe (pI=5.52) and Gly‐Gly‐L ‐Leu (pI=5.52) achieved baseline separation within 18.3 min with detection limits in the range of 0.2–2.0 nmol/L. RSDs of peak migration time and peak area were in the range of 1.45–3.57 and 4.93–6.32%, respectively. This method has been applied to the analysis of the four peptides in the spiked urine sample with satisfactory results.  相似文献   

20.
We previously demonstrated the separation of proteins by isoelectric focusing (IEF) over pH 4-8 immobilized pH gradients (IPGs) over 54 cm (Poland et al., Electrophoresis 2003, 24, 1271). Here we show that similar results can be conveniently achieved using commercially available IPGs of appropriate pH ranges positioned end-on-end in series during electrophoresis, which we term "daisy chain IEF". Proteins efficiently electrophorese from one IPG to another during IEF by traversing buffer-filled porous bridges between the serial IPGs. A variety of materials can function as bridges, including paper, polyacrylamide gels or even IPGs. The quality of two-dimensional (2-D) protein patterns is not apparently worse than that generated by conventional IEF using the same individual IPGs. A major advantage of this method is that sample is consumed efficiently, without the requirement for preliminary steps, such as chamber IEF. This advantage is pronounced when working with extremely limited sources of samples, such as with clinical biopsies or cellular subfractions. The present study was limited by the commercial availability of suitable pH gradients. Proteomics analyses could be further improved if commercial vendors would manufacture IPGs with suitable pH ranges to achieve high resolution (approximately 100 cm) IEF separation of proteins in one electrophoretic step over the pH range 2-12.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号