首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zusammenfassung Es wurden die Verbindungen HYT *·4 H2O, Y4 T 3·14 H2O, LiYT·4 H2O, NaYT·5 H2O, KYT·3 H2O, RbYT·4 H2O, CsYT·4 H2O, NH4YT·3 H2O, K2YTOH·4 H2O, K3YT(OH)2·4 H2O, K4YT(OH)3·3 H2O, K5YT(OH)4·3 H2O, KYH4 T 2·3 H2O, K2YH3 T 2·5 H2O, K3YH2 T 2·4 H2O, KY2 T(OH)3·5 H2O, K2Y2 T(OH)4·5 H2O isoliert. Die Präparate wurden mit Hilfe von Thermoanalyse, IR-Absorptionsspektren und Röntgenstreuung näher charakterisiert und ihre Löslichkeit in Wasser untersucht.
Some complexes of Yttrium with tartrates were isolated and the compounds characterised by thermogravimetric analysis, IR-spectroscopy and X-ray diffraction. Solubility in water was examined.
  相似文献   

2.
Two three‐dimensional (3D) lanthanide coordination polymers (CPs) of the general formula [Ln2(PDOA)3(H2O)]n · 2nH2O [Ln = Gd ( 1 ), Tb ( 2 )] were synthesized by solvothermal reactions of the corresponding rare‐earth chloride and pyrazine‐2,3‐dicarboxylic acid (H2PDOA). The CPs were structurally characterized by single‐crystal X‐ray diffraction, IR spectroscopy, thermogravimetry, and elemental analysis. CPs 1 and 2 are isostructural and crystallize in the monoclinic space group P21/c. The frameworks are constructed from dinuclear lanthanide building blocks in which the PDOA2– ions adopt three coordination modes, μ3kO;kO;kN,O, μ4kN,O;kO;kO;kO,O, and μ5kN,O;kO;kO;kO,O;kO, respectively. The Tb3+ polymer of 2 exhibits characteristic photoluminescence in the visible region. The magnetic properties of CP 1 were investigated by measuring the magnetic susceptibilities in the temperature range 1.8–300 K.  相似文献   

3.
Zusammenfassung Die Substanzen LaHT *·4 H2O, La4 T 3·14 H2O, KLaT· ·3 H2O, K2LaTOH·4 H2O, K2LaH3 T 2·4 H2O, K3LaH2 T 2· ·4 H2O und K4LaHT 2·5 H2O wurden isoliert und durch Thermoanalyse, IR-Absorptionspektren und Röntgenstreuung näher charakterisiert. Es wurde auch ihre Löslichkeit in Wasser bestimmt.
The following compounds where isolated, and characterized by means of thermal analysis, I. R. spectroscopy and X-ray diffraction. Their solubilities in aqueous solution were determined: LaHT·4 H2O, La4 T 3·14 H2O, KLaT·3 H2O, K2LaTOH· ·4 H2O, K2LaH3 T 2·4 H2O, K3LaH2 T 2·4 H2O, K4LaHT 2· ·5 H2O.


Mit 7 Abbildungen  相似文献   

4.
Zusammenfassung Nachstehende Verbindungen wurden hergestellt: Pr4 T 3·13 H2O, Nd4 T 3·12 H2O, Sm4 T 3·12 H2O, Gd4 T 3·12 H2O, Tb4 T 3·13 H2O, Dy4 T 3·12 H2O, Ho4 T 3·14 H2O, Er4 T 3·14 H2O, PrH2 TCl·3 H2O, NdH2 TCl·3 H2O, SmH2 TCl·3 H2O, GdH2 TCl·4 H2O, TbH2 TCl·3 H2O, DyH2 TCl·2 H2O, HoH2 TCl·3 H2O, ErH2 TCl·3 H2O. Die Präparate wurden mit Thermoanalyse, IR-Absorptionsspektren, Röntgenstreuung und hinsichtlich Löslichkeit weiter untersucht.
Chemistry of the rare earth metals, XXVI: Tartrates of the rere earths of the types Ln4T3·xH 2 O, and their reaction withHCl
The above series of compounds has been prepared and further characterized by thermal analysis, IR spectra, X-ray diffraction, and solubility.


Ln=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er.

H4 T=C4H6O6.  相似文献   

5.
(4‐Aminophenyl)arsonic acid (p‐arsanilic acid) is used as an antihelminth in veterinary applications and was earlier used in the monosodium salt dihydrate form as the antisyphilitic drug atoxyl. Examples of complexes with this acid are rare. The structures of the alkaline earth metal (Mg, Ca, Sr and Ba) complexes with (4‐aminophenyl)arsonic acid (p‐arsanilic acid) have been determined, viz. hexaaquamagnesium bis[hydrogen (4‐aminophenyl)arsonate] tetrahydrate, [Mg(H2O)6](C6H7AsNO3)·4H2O, (I), catena‐poly[[[diaquacalcium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]‐[diaquacalcium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ]] dihydrate], {[Ca(C6H7AsNO3)2(H2O)2]·2H2O}n , (II), catena‐poly[[triaquastrontium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]], [Sr(C6H7AsNO3)2(H2O)3]n , (III), and catena‐poly[[triaquabarium]‐bis[μ2‐hydrogen (4‐aminophenyl)arsonato‐κ2O :O ′]], [Ba(C6H7AsNO3)2(H2O)3]n , (IV). In the structure of magnesium salt (I), the centrosymmetric octahedral [Mg(H2O)6]2+ cation, the two hydrogen p‐arsanilate anions and the four water molecules of solvation form a three‐dimensional network structure through inter‐species O—H and N—H hydrogen‐bonding interactions with water and arsonate O‐atom and amine N‐atom acceptors. In one‐dimensional coordination polymer (II), the distorted octahedral CaO6 coordination polyhedron comprises two trans‐related water molecules and four arsonate O‐atom donors from bridging hydrogen arsanilate ligands. One bridging extension is four‐membered via a single O atom and the other is eight‐membered via O :O ′‐bridging, both across inversion centres, giving a chain coordination polymer extending along the [100] direction. Extensive hydrogen‐bonding involving O—H…O, O—H…N and N—H…O interactions gives an overall three‐dimensional structure. The structures of the polymeric Sr and Ba complexes (III) and (IV), respectively, are isotypic and are based on irregular M O7 coordination polyhedra about the M 2+ centres, which lie on twofold rotation axes along with one of the coordinated water molecules. The coordination centres are linked through inversion‐related arsonate O :O ′‐bridges, giving eight‐membered ring motifs and forming coordination polymeric chains extending along the [100] direction. Inter‐chain N—H…O and O—H…O hydrogen‐bonding interactions extend the structures into three dimensions and the crystal packing includes π–π ring interactions [minimum ring centroid separations = 3.4666 (17) Å for (III) and 3.4855 (8) Å for (IV)].  相似文献   

6.
Using four basis bets, (6‐311G(d,p), 6‐31+G(d,p), 6‐31++G(2d,2p), and 6‐311++G(3df,3pd), the optimized structures with all real frequencies were obtained at the MP2 level for the dimers CH2O? HF, CH2O? H2O, CH2O? NH3, and CH2O? CH4. The structures of CH2O? HF, CH2O? H2O, and CH2O? NH3 are cycle‐shaped, which result from the larger bend of σ‐type hydrogen bonds. The bend of σ‐type H‐bond O…H? Y (Y?F, O, N) is illustrated and interpreted by an attractive interaction of a chemically intuitive π‐type hydrogen bond. The π‐type hydrogen bond is the interaction between one of the H atoms of CH2O and lone pair(s) on the F atom in HF, the O atom in H2O, or the N atom in NH3. In contrast with the above three dimers, for CH2O? CH4, because there is not a π‐type hydrogen bond to bend its linear hydrogen bond, the structure of CH2O? CH4 is noncyclic shaped. The interaction energy of hydrogen bonds and the π‐type H‐bond are calculated and discussed at the CCSD (T)/6‐311++G(3df,3pd) level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

7.
Copper(II) bis(4,4,4‐trifluoro‐1‐phenylbutane‐1,3‐dionate) complexes with pyridin‐2‐one (pyon), 3‐hydroxypyridine (hpy) and 3‐hydroxypyridin‐2‐one (hpyon) were prepared and the solid‐state structures of (pyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)] or [Cu(tfpb‐κ2O ,O ′)2(pyon‐κO )], (I), bis(pyridin‐3‐ol‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO)2] or [Cu(tfpb‐κ2O ,O ′)2(hpy‐κO )2], (II), and bis(3‐hydroxypyridin‐2‐one‐κO )bis(4,4,4‐trifluoro‐3‐oxo‐1‐phenylbutan‐1‐olato‐κ2O ,O ′)copper(II), [Cu(C10H6F3O2)2(C5H5NO2)2] or [Cu(tfpb‐κ2O ,O ′)2(hpyon‐κO )2], (III), were determined by single‐crystal X‐ray analysis. The coordination of the metal centre is square pyramidal and displays a rare example of a mutual cis arrangement of the β‐diketonate ligands in (I) and a trans‐octahedral arrangement in (II) and (III). Complex (II) presents the first crystallographic evidence of κO‐monodentate hpy ligation to the transition metal enabling the pyridine N atom to participate in a two‐dimensional hydrogen‐bonded network through O—H…N interactions, forming a graph‐set motif R 22(7) through a C—H…O interaction. Complex (III) presents the first crystallographic evidence of monodentate coordination of the neutral hpyon ligand to a metal centre and a two‐dimensional hydrogen‐bonded network is formed through N—H…O interactions facilitated by C—H…O interactions, forming the graph‐set motifs R 22(8) and R 22(7).  相似文献   

8.
2,2,2‐Trinitroethanol, C2H3N3O7, at 100 (2) K has Z′ = 2 in the space group P21/c. The structure displays intramolecular O—H...O hydrogen bonds, as well as intermolecular O—H...O and C—H...O hydrogen bonding; the O—H...O hydrogen bonds, forming R44(8) rings, and dipolar nitro–nitro interactions account for the high density of 1.839 Mg m−3.  相似文献   

9.
The binuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,2κO‐(1,2‐dimethoxyethane‐1κ2O ,O ′)bis(μ‐phenylmethanolato‐1:2κ2O :O )(tetrahydrofuran‐2κO )dimagnesium(II), [Mg2(C7H7O)2(C15H23O)2(C4H8O)(C4H10O2)] or [(BHT)(DME)Mg(μ‐OBn)2Mg(THF)(BHT)], (I), was obtained from the complex [(BHT)Mg(μ‐OBn)(THF)]2 by substitution of one tetrahydrofuran (THF) molecule with 1,2‐dimethoxyethane (DME) in toluene (BHT is O‐2,6‐t Bu2‐4‐MeC6H4 and Bn is benzyl). The trinuclear complex bis(2,6‐di‐tert‐butyl‐4‐methylphenolato)‐1κO ,3κO‐tetrakis(μ‐2‐methylphenolato)‐1:2κ4O :O ;2:3κ4O :O‐bis(tetrahydrofuran)‐1κO ,3κO‐trimagnesium(II), [Mg3(C7H7O)4(C15H23O)2(C4H8O)2] or [(BHT)2(μ‐O‐2‐MeC6H4)4(THF)2Mg3], (II), was formed from a mixture of Bu2Mg, [(BHT)Mg(n Bu)(THF)2] and 2‐methylphenol. An unusual tetranuclear complex, bis(μ3‐2‐aminoethanolato‐κ4O :O :O ,N )tetrakis(μ2‐2‐aminoethanolato‐κ3O :O ,N )bis(2,6‐di‐tert‐butyl‐4‐methylphenolato‐κO )tetramagnesium(II), [Mg4(C2H6NO)6(C15H23O)2] or Mg4(BHT)2(OCH2CH2NH2)6, (III), resulted from the reaction between (BHT)2Mg(THF)2 and 2‐aminoethanol. A polymerization test demonstrated the ability of (III) to catalyse the ring‐opening polymerization of ϵ‐caprolactone without activation by alcohol. In all three complexes (I)–(III), the BHT ligand demonstrates the terminal κO‐coordination mode. Complexes (I), (II) and (III) have binuclear rhomboid Mg2O2, trinuclear chain‐like Mg3O4 and bicubic Mg4O6 cores, respectively. A survey of the literature on known polynuclear Mgx Oy core types for ArO–Mg complexes is also presented.  相似文献   

10.
The structures of the sodium, potassium and rubidium complex salts of (4‐fluorophenoxy)acetic acid (PFPA), namely poly[μ‐aqua‐aqua‐μ‐[2‐(4‐fluorophenoxy)acetato]‐κ3O 1,O 2:O1′‐sodium], [Na(C8H6FO3)(H2O)2]n , (I), and isotypic poly[μ5‐[2‐(4‐fluorophenoxy)acetato]‐κ5O 1,O 2:O 1,O 1′:O 1′:O 1′:O1′‐potassium], [K(C8H6FO3)]n , (II), and poly[μ5‐[2‐(4‐fluorophenoxy)acetato]‐κ5O 1,O 2:O 1,O 1′:O 1′:O 1′:O1′‐rubidium], [Rb(C8H6FO3)]n , (III), have been determined and their coordination polymeric structures described. In the structure of (I), the very distorted octahedral NaO6 coordination polyhedron comprises two bidentate chelating O‐atom donors (carboxylate and phenoxy) of the PFPA ligand and three O‐atom donors from water molecules, one monodentate and the other μ2‐bridging between inversion‐related Na centres in a cyclic manner. A bridging carboxylate donor generates two‐dimensional polymer layers lying parallel to (001), in which intralayer water O—H…O hydrogen‐bonding associations are also present. Structures (II) and (III) are isotypic, each having an irregular M O7 stereochemistry, with the primary metal–ligand bidentate chelate similar to that in (I) and extended into a two‐dimensional polymeric layered structure, lying parallel to (100), through five additional bridging carboxylate O atoms. Two of these bonds are from an O ,O ′‐bidentate chelate interaction and the other three are from μ3‐O‐atom bridges, generating cyclic links with short M M separations [3.9064 (17) Å for (II) and 4.1001 (8) for (III)], the shortest being a centrosymmetric four‐membered cyclic link. In the crystals of (I)–(III), intralayer C—H…F interactions are present, but no π–π ring interactions are found.  相似文献   

11.
Compounds of the composition La(bpyO2 *)4Cl3·4H2O, La(bpyO2)3Cl3·5H2O, La(bpyO2)2Cl3·3H2O, La(bpyO2)Cl3·3H2O, La(bpyO2)4Br3·4H2O, La(bpyO2)3Br3·8H2O, La(bpyO2)2Br3·7H2O, La(bpyO2)Br3·4H2O, La(bpyO2)4I3·3H2O, La(bpyO2)3(NO3)3·2H2O, La(bpyO2)2(NO3)3·2H2O, La(bpyO2)4(SCN)3·3H2O, La(bpyO2)3(SCN)3·2H2O, La(bpyO2)2(SCN)3·2H2O were isolated. They were investigated by means of thermoanalysis, I.R. spectroscopy, X-ray diffraction and molar conductivity.  相似文献   

12.
The title complex, trans‐bis(dimethylformamide‐κO)bis{N,N′‐N′′,N′′′‐tetra‐tert‐butyl[oxybis(phosphonic diamide‐κO)]}manganese(II) dichloride dihydrate, [Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O, is the first example of a bis‐chelate amido–pyrophosphate (pyrophosphoramide) complex containing an O[P(O)(NH)2]2 fragment. Its asymmetric unit contains half of the complex dication, one chloride anion and one water molecule. The MnII atom, located on an inversion centre, is octahedrally coordinated, with a slight elongation towards the monodentate dimethylformamide ligand. Structural features of the title complex, such as the P=O bond lengths and the planarity of the chelate ring, are compared with those of previously reported complexes with six‐membered chelates involving the fragments C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2. This analysis shows that the six‐membered chelate rings are less puckered in pyrophosphoramide complexes containing a P(O)OP(O) skeleton, such as the title compound. The extended structure of the title complex involves a linear aggregate mediated by N—H...O and N—H...Cl hydrogen bonds, in which the chloride anion is an acceptor in two additional O—H...Cl hydrogen bonds.  相似文献   

13.
A 1?:?1 chelate complex [(C6H5)3PC(COCH3)(COC6H5)-κO,O′]UO2(NO3)2 has been synthesized by reaction of (C6H5)3PC(COCH3)(COC6H5) with UO2(NO3)2?·?6H2O in methanol at room temperature and characterized by elemental analysis, spectroscopy as well as by single-crystal X-ray diffraction. The complex crystallizes in P21/n space group with a?=?10.007(2)?Å, b?=?15.285(7)?Å, c?=?19.20(1)?Å, β?=?91.22(3)°, V?=?2936(2)?Å3, Z?=?4, D c?=?1.847?g?cm?3. In the solid state structure, the dihedral angle [88.1(4)°] between the planes defined by the two quartets of atoms O1 O8 O2 O4 and O6 O5 O3 O7 is close to 90°, as expected for a triangulated dodecahedral geometry around uranium.  相似文献   

14.
Three complexes, Na4[DyIII(dtpa)(H2O)]2?·?16H2O, Na[DyIII(edta)(H2O)3]?·?3.25H2O and Na3[DyIII (nta)2(H2O)]?·?5.5H2O, have been synthesized in aqueous solution and characterized by FT–IR, elemental analyses, TG–DTA and single-crystal X-ray diffraction. Na4[DyIII(dtpa)(H2O)]2?·?16H2O crystallizes in the monoclinic system with P21/n space group, a?=?18.158(10)?Å, b?=?14.968(9)?Å, c?=?20.769(12)?Å, β?=?108.552(9)°, V?=?5351(5)?Å3, Z?=?4, M?=?1517.87?g?mol?1, D c?=?1.879?g?cm?3, μ?=?2.914?mm?1, F(000)?=?3032, and its structure is refined to R 1(F)?=?0.0500 for 9384 observed reflections [I?>?2σ(I)]. Na[DyIII(edta)(H2O)3]?·?3.25H2O crystallizes in the orthorhombic system with Fdd2 space group, a?=?19.338(7)?Å, b?=?35.378(13)?Å, c?=?12.137(5)?Å, β?=?90°, V?=?8303(5)?Å3, Z?=?16, M?=?586.31?g?mol?1, D c?=?1.876?g?cm?3, μ?=?3.690?mm?1, F(000)?=?4632, and its structure is refined to R 1(F)?=?0.0307 for 4027 observed reflections [I?>?2σ(I)]. Na3[DyIII(nta)2(H2O)]?·?5.5H2O crystallizes in the orthorhombic system with Pccn space group, a?=?15.964(12)?Å, b?=?19.665(15)?Å, c?=?14.552(11)?Å, β?=?90°, V?=?4568(6)?Å3, Z?=?8, M?=?724.81?g?mol?1, D c?=?2.102?g?cm?3, μ?=?3.422?mm?1, F(000)?=?2848, and its structure is refined to R 1(F)?=?0.0449 for 4033 observed reflections [I?>?2?σ(I)]. The coordination polyhedra are tricapped trigonal prism for Na4[DyIII(dtpa)(H2O)]2?·?16H2O and Na3[DyIII(nta)2(H2O)]?·?5.5H2O, but monocapped square antiprism for Na[DyIII(edta)(H2O)3]?·?3.25H2O. The crystal structures of these three complexes are completely different from one another. The three-dimensional geometries of three polymers are 3-D layer-shaped structure for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 1-D zigzag type structure for Na[DyIII(edta)(H2O)3]?·?3.25H2O and a 2-D parallelogram for Na3[DyIII(nta)2(H2O)]?·?5.5H2O. According to thermal analyses, the collapsing temperatures are 356°C for Na4[DyIII(dtpa)(H2O)]2?·?16H2O, 371°C for Na[DyIII(edta)(H2O)3]?·?3.25H2O and 387°C for Na3[DyIII(nta)2(H2O)]?·?5.5H2O, which indicates that their crystal structures are very stable.  相似文献   

15.
Syntheses and Crystal Structures of Rb4Br2O and Rb6Br4O In the quasi‐binary system RbBr/Rb2O, the addition compounds Rb4Br2O and Rb6Br4O are obtained by solid state reaction of the boundary components RbBr and Rb2O. Crystals of red‐orange Rb4Br2O as well as of orange Rb6Br4O decompose immediately when exposed to air. Rb4Br2O (Pearson code tI14, I4/mmm, a = 544.4(6) pm, c = 1725(2) pm, Z = 2, 175 symmetry independent reflections with Io > 2σ(I), R1= 0.0618) crystallizes in the anti K2NiF4 structure type; Rb6Br4O (Pearson code hR22, R3c, a = 1307.8(3) pm, c = 1646.6(5) pm, Z = 6, 630 symmetry independent reflections with Io > 2σ(I), R1 = 0.0759) in the anti K4CdCl6 structure type. Both structures contain characteristic ORb6‐octahedra and can be understood as expanded perovskites, following the general systematics of alkaline metal oxide halides.  相似文献   

16.
Summary. The interaction of pyridine-N-oxide (pyNO) and 3-picoline-N-oxide (3picNO) with zinc(II) and cadmium(II) azides afforded complexes with empirical formulae Zn(N3)2(pyNO)(H2O)2, Zn(N3)2(3picNO)2(H2O)2 and Cd(N3)2(3picNO)2(H2O)2. The IR spectra of these complexes are measured and discussed. X-Ray single crystal diffraction showed for the first complex, which should be formulated as {[Zn(N3)2(H2O)2](pyNO)}n, to consist of 1D chains of trans-[Zn(N3)2(H2O)2]n, double end-on (-1,1) azido bridges and noncoordinated pyNO molecules. The other two complexes are isomorphous containing 1D trans-[M(N3)2(H2O)2]n, double (-1,1) azido bridges, and hydrogen bonded noncoordinated 3picNO molecules. Each pyridine-N-oxide molecule forms three hydrogen bonds, whereas the 3-picoline-N-oxides form two hydrogen bonds. The metal centers exhibit distorted octahedral geometry.Received March 5, 2003; accepted May 15, 2003 Published online September 11,2003  相似文献   

17.
In the crystal networks of N,N′‐bis(2‐chlorobenzyl)‐N′′‐(2,6‐difluorobenzoyl)phosphoric triamide, C21H18Cl2F2N3O2P, (I), N‐(2,6‐difluorobenzoyl)‐N′,N′′‐bis(4‐methoxybenzyl)phosphoric triamide, C23H24F2N3O4P, (II), and N‐(2‐chloro‐2,2‐difluoroacetyl)‐N′,N′′‐bis(4‐methylphenyl)phosphoric triamide, C16H17ClF2N3O2P, (III), C=O...H—NC(O)NHP(O) and P=O...H—Namide hydrogen bonds are responsible for the aggregation of the molecules. This is the opposite result from that commonly observed for carbacylamidophosphates, which show a tendency for the phosphoryl group, rather than the carbonyl counterpart, to form hydrogen bonds with the NH group of the C(O)NHP(O) skeleton. This hydrogen‐bond pattern leads to cyclic R22(10) motifs in (I)–(III), different from those found for all previously reported compounds of the general formula RC(O)NHP(O)[NR1R2]2 with the syn orientation of P=O versus NH [R22(8)], and also from those commonly observed for RC(O)NHP(O)[NHR1]2 [a sequence of alternate R22(8) and R22(12) motifs]. In these cases, the R22(8) and R22(12) graph sets are formed through similar kinds of hydrogen bond, i.e. a pair of P=O...H—NC(O)NHP(O) hydrogen bonds for the former and two C=O...H—Namide hydrogen bonds for the latter. This article also reviews 102 similar structures deposited in the Cambridge Structural Database and with the International Union of Crystallography, with the aim of comparing hydrogen‐bond strengths in the above‐mentioned cyclic motifs. This analysis shows that the strongest N—H...O hydrogen bonds exist in the R22(8) rings of some molecules. The phosphoryl and carbonyl groups in each of compounds (I)–(III) are anti with respect to each other and the P atoms are in a tetrahedral coordination environment. In the crystal structures, adjacent molecules are linked via the above‐mentioned hydrogen bonds in a linear arrangement, parallel to [010] for (I) and (III) and parallel to [100] for (II). Formation of the NC(O)NHP(O)—H...O=C instead of the NC(O)NHP(O)—H...O=P hydrogen bond is reflected in the higher NC(O)NHP(O)—H vibrational frequencies for these molecules compared with previously reported analogous compounds.  相似文献   

18.
Using four basis sets, 6‐311G(d,p), 6‐31+G(d,p), 6‐311++G(2d,2p), and 6‐311++G(3df,3pd), the optimized structures with all real frequencies were obtained at the MP2 level for dimers CH2O? HF, CH2O? H2O, CH2O? NH3, and CH2O? CH4. The structures of CH2O? HF, CH2O? H2O, and CH2O? NH3 are cycle‐shaped, which result from the larger bend of σ‐type hydrogen bonds. The bend of σ‐type H‐bond O…H? Y (Y?F, O, N) is illustrated and interpreted by an attractive interaction of a chemically intuitive π‐type hydrogen bond. The π‐type hydrogen bond is the interaction between one of the acidic H atoms of CH2O and lone pair(s) on the F atom in HF, the O atom in H2O, or the N atom in NH3. By contrast with above the three dimers, for CH2O? CH4, because there is not a π‐type hydrogen‐bond to bend its linear hydrogen bond, the structure of CH2O? CH4 is a noncyclic shaped. The interaction energy of hydrogen bonds and the π‐type H‐bond are calculated and discussed at the CCSD(T)/6‐311++G(3df,3pd) level. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
In N,N′‐di‐tert‐butyl‐N′′,N′′‐dimethylphosphoric triamide, C10H26N3OP, (I), and N,N′,N′′,N′′′‐tetra‐tert‐butoxybis(phosphonic diamide), C16H40N4O3P2, (II), the extended structures are mediated by P(O)...(H—N)2 interactions. The asymmetric unit of (I) consists of six independent molecules which aggregate through P(O)...(H—N)2 hydrogen bonds, giving R21(6) loops and forming two independent chains parallel to the a axis. Of the 12 independent tert‐butyl groups, five are disordered over two different positions with occupancies ranging from to . In the structure of (II), the asymmetric unit contains one molecule. P(O)...(H—N)2 hydrogen bonds give S(6) and R22(8) rings, and the molecules form extended chains parallel to the c axis. The structures of (I) and (II), along with similar structures having (N)P(O)(NH)2 and (NH)2P(O)(O)P(O)(NH)2 skeletons extracted from the Cambridge Structural Database, are used to compare hydrogen‐bond patterns in these families of phosphoramidates. The strengths of P(O)[...H—N]x (x = 1, 2 or 3) hydrogen bonds are also analysed, using these compounds and previously reported structures with (N)2P(O)(NH) and P(O)(NH)3 fragments.  相似文献   

20.
A hybrid film (MWCNTs‐RuOx?nH2O) which contains multiwalled carbon nanotubes (MWCNTs) along with the incorporation of ruthenium oxide (RuOx?nH2O) has been synthesized on glassy carbon electrode (GCE), gold (Au), indium tin oxide (ITO) and screen printed carbon electrode (SPCE) by potentiostatic methods. The presence of MWCNTs in the hybrid film enhances surface coverage concentration (Γ) of RuOx?nH2O to ≈2100%. The surface morphology of the hybrid film deposited on ITO has been studied using scanning electron microscopy and atomic force microscopy. These two techniques reveal that the RuOx?nH2O incorporated on MWCNTs. Electrochemical quartz crystal microbalance study too reveals the incorporation of MWCNTs and RuOx?nH2O. The MWCNTs‐RuOx?nH2O hybrid film exhibits promising enhanced electrocatalytic activity towards the biochemical compounds such as epinephrine and norepinephrine. The electrocatalytic responses of these analytes at RuOx?nH2O, MWCNTs and MWCNTs‐RuOx?nH2O hybrid films have been measured using cyclic voltammetry. The obtained sensitivity values from electrocatalysis studies of analytes for MWCNTs‐RuOx?nH2O hybrid film are higher than the RuOx?nH2O and MWCNTs films. Finally, the flow injection analysis has been used for the amperometric studies of analytes at MWCNTs‐RuOx?nH2O hybrid film modified SPCEs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号