首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Decolorization of the azo dye C.I. Reactive Black 5 (RB5) in solution by a combination of sonolysis and ozonation was investigated. The results showed that the optimum pH for the reaction was 11.0, and both lower and higher pH decreased the decolorization rate. Increasing the initial concentration of RB5 led to a decreasing decolorization rate. Under the experimental conditions, the decolorization rate increased with an increase in temperature. The decolorization of RB5 followed pseudo-first-order reaction kinetics. Based on the decolorization rate constants obtained at different temperatures within the range 287-338K and the Arrhenius equation, the apparent activation energy (E(a)) was calculated to be 11.2kJmol(-1). This indicated that the reaction has little dependence on temperature. The color decay was considerably faster than the decrease in total organic carbon (TOC), which was attributed to the ease of chromophore destruction. Hence the efficiency of decolorization was 84% compared with 4% of TOC removal after 5min reaction. Additionally, muconic acid, (2Z)-pent-2-enedioic acid and maleic acid were identified as main oxidation products by gas chromatography coupled with mass spectrometry (GC-MS) after 150min of reaction.  相似文献   

2.
Iida Y  Kozuka T  Tuziuti T  Yasui K 《Ultrasonics》2004,42(1-9):635-639
Removal of Methyl orange (MO), as a model contaminants, in aqueous solution by the simultaneous application of ultrasound with the addition of porous adsorbent powders is reported. Activated alumina powders in acidic form were used as an adsorbent. Results showed that MO could be degraded by ultrasonic irradiation at 130 kHz with the first order rate constant of 8x10(-4) and 5x10(-4) sec(-1), in acidic and basic conditions, respectively, without adsorbents. Adsorption rates of MO by activated alumina mainly depended on the acidity of alumina, the pH of solution and the stirring speed. At pH=4.2 with mechanical stirring without ultrasonic radiation, acidic activated alumina (0.1 g/100 ml) removed MO at about two times more rapidly than ultrasonic irradiation. In the case of simultaneous application of ultrasound irradiation and activated alumina, MO was almost removed from the solution within 10 min, which corresponded to as a rate constant of 5x10(-3) sec(-1). This kind of synergistic enhancement of removal rate with ultrasound and adsorbents should be practically useful for the elimination of contaminants in the water treatment processes. In addition, the effects of pH and coexisting chemicals in the solution were examined for the processes. Although the adsorption process was effective in some selected conditions, ultrasonic degradation was more robust in wider range of pH and coexisting chemicals. Simultaneous application of the two processes can perform complementary.  相似文献   

3.
The sonochemical decolorization and decomposition of azo dyes, such as C. I. Reactive Red 22 and methyl orange, were performed from the viewpoints of wastewater treatment and to determine the reaction kinetics. A low concentration of the azo dye solution was irradiated with a 200 kHz and 1.25 W/cm2 ultrasound in a homogeneous aqueous solution. The azo dye solutions were readily decolorized by the irradiation. The sonochemical decolorization was also depressed by the addition of the t-butyl alcohol radical scavenger. These results indicated that azo dye molecules were mainly decomposed by OH radicals formed from the water sonolysis. In this paper, we propose a new kinetics model taking into account the heterogeneous reaction kinetics similar to a Langmuir-Hinshelwood mechanism or an Eley-Rideal mechanism. The proposed kinetics model is based on the local reaction site at the interface region of the cavitation bubbles, where azo dye molecules are quickly decomposed because an extremely high concentration of OH radicals exists in this region. To confirm the proposed kinetics model, the effects of the initial concentration of azo dyes, irradiated atmosphere and pH on the decomposition rates were investigated. The obtained results were in good agreement with the proposed kinetics model.  相似文献   

4.
The present work demonstrates the application of the combination of hydrodynamic cavitation (HC) and the heterogeneous Fenton process (HF, Fe0/H2O2) for the decolorization of azo dye Orange G (OG). The effects of main affecting operation conditions such as the inlet fluid pressure, initial concentration of OG, H2O2 and zero valent iron (ZVI), the fixed position of ZVI, and medium pH on decolorization efficiency were discussed with guidelines for selection of optimum parameters. The results revealed that the acidic conditions are preferred for OG decolorizaiton. The decolorization rate increased with increasing H2O2 and ZVI concentration and decreased with increasing OG initial concentration. Besides, the decolorization rate was strongly dependent on the fixed position of ZVI. The analysis results of degradation products using liquid chromatography–ESI–TOF mass spectrometry revealed that the degradation mechanism of OG proceeds mainly via reductive cleavage of the azo linkage due to the attack of hydroxyl radical. The present work has conclusively established that the combination of HC and HF can be more energy efficient and gives higher decolorization rate of OG as compared with HC and HF alone.  相似文献   

5.
In this study, we developed a novel ultrasound-assisted electrocatalytic oxidation (US–EO) process to decolorize azo dyes in aqueous solution. Rhodamine B was decolorized completely within several minutes in this developed US–EO system. Oxidation parameters such as applied potentials, power of the ultrasound, initial pH of the solution, and initial concentration of RhB were systematically studied and optimized. An obvious synergistic effect was found in decolorization of RhB by the US–EO process when comparing with either ultrasound (US) process or electrocatalytic oxidation (EO) one. Additionally, the decolorization of other azo dyes, such as methylene blue, reactive brilliant red X-3B, and methyl orange, were also effective in the US–EO system. The results indicated that US–EO system was effective for the decolorization of azo dyes, suggesting its great potential in dyeing wastewater treatment.  相似文献   

6.
Sonophotoelectrocatalytic degradation of azo dye on TiO2 nanotube electrode   总被引:1,自引:0,他引:1  
The degradation of azo dye, methyl orange (MeO) in aqueous solution with sonophotoelectrocatalytic process was investigated. The TiO(2) nanotubes were used as electrode in photoelectrocatalytic (PEC), sonophotoelectrocatalytic (SPEC) processes or as photocatalyst in photocatalytic (PC), sonophotocatalytic (SPC) processes, respectively. Experimental results showed that the hybrid processes could efficiently enhance the degradation efficiency of MeO, and followed pseudo-first-order kinetics. At the optimized experimental conditions, the rate constants of decolorization of MeO were 0.0732 min(-1) for SPEC process; 0.0523 min(-1) for PEC process, 0.0073 min(-1) for SPC process and 0.0035 min(-1) for PC process. The rate constants obviously indicated that there existed synergistic effect in the ultrasonic, electro-assisted and photocatalytic processes.  相似文献   

7.
The decolorization of reactive dye C.I. Reactive Blue 19 from aqueous solution was studied by using ultrasound, activated carbon and combined ultrasound/activated carbon. The combined effects of independent variables, such as ultrasound power, temperature, time, activated carbon concentration, dye concentration and initial pH were investigated on the decolorization by using the central composite design. The decolorization of RB 19 was modelled statistically and optimized by means of the Matlab computer software. The decolorization were accomplished at optimum conditions by using ultrasound, activated carbon and combined ultrasound/activated carbon as 36%, 91% and 99.9%, respectively. The application of ultrasonic irradiation was found to be beneficial for decolorization of RB 19 from aqueous solution by adsorption.  相似文献   

8.
Ultrasonic degradation of poly(vinyl alcohol) in aqueous solution   总被引:2,自引:0,他引:2  
Solution of poly(vinyl alcohol) in water with different concentrations (by weight 1%, 1.5%, 2%) and different volumes (50, 75 and 100 ml) were subjected to ultrasonic degradation. A method of viscometry was used to study the degradation behavior and kinetic model was developed to estimate the degradation rate constant. The degradation rate constant was correlated with the power input due to ultrasonic irradiation and reaction volume. It was found that rate constant decreases as the reaction volume and concentration increases. The proportionality index of the relation between rate constant, power input and reaction volume was found to be nearly equal for all concentrations studied. The proportionality constant was found to be approximately equal for 1% and 1.5% solution and for 2% solution it was approximately half the value for that of 1% and 1.5% solutions. The decrease in rate constant and proportionality constant is attributed to the fact that at higher concentration and at higher volume, the intensity of cavitation phenomenon is depressed and therefore the extent of polymer chain breaking decreases. The difference in the values of limiting viscosities (constant solution viscosity which does not decrease by further ultrasonic irradiation) for 50, 75 and 100 ml solutions for each of 1% and 1.5% concentration was negligible. But 2% solution at 100 ml volume showed slightly higher value of limiting viscosity than that for 50 and 75 ml.  相似文献   

9.
The effect of the presence and absence of the chloroalkanes, dichloromethane (CH(2)Cl(2)), chloroform (CHCl(3)) and carbon tetrachloride (CCl(4)) on the extent of oxidation of aqueous I(-) to I(3)(-) has been investigated in (a) a liquid whistle reactor (LWR) generating hydrodynamic cavitation and (b) an ultrasonic probe, which produces acoustic cavitation. The aim has been to examine the intensification achieved in the extent of oxidation due to the generation of additional free radicals/oxidants in the reactor as a result of the presence of chloroalkanes. It has been observed that the extent of increase in the oxidation reaction is strongly dependent on the applied pressure in the case of the LWR. Also, higher volumes of the chloroalkanes favour the intensification and the order of effectiveness is CCl(4)>CHCl(3)>CH(2)Cl(2). However, the results with the ultrasonic probe suggest that an optimum concentration of CH(2)Cl(2) or CHCl(3) exists beyond which there is little increase in the extent of observed intensification. For CCl(4), however, no such optimum concentration was observed and the extent of increase in the rates of oxidation reaction rose with the amount of CCl(4) added. Stage wise addition of the chloroalkanes was found to give marginally better results in the case of the ultrasonic probe as compared to bulk addition at the start of the run. Although CCl(4) is the most effective, its toxicity and carcinogenicity may mean that CH(2)Cl(2) and CHCl(3) offer a safer viable alternative and the present work should be useful in establishing the amount of chloroalkanes required for obtaining a suitable degree of intensification.  相似文献   

10.
四氯化碳萃取辅助的水中甲烷拉曼探测技术研究   总被引:1,自引:0,他引:1  
在常温常压下,由于甲烷(CH4)在水中的溶解度很低,使用常规拉曼光谱技术很难获得水中溶解的低浓度甲烷的拉曼信号。为解决上述问题,提出了一种四氯化碳(CCl4)萃取辅助的探测新方法。利用萃取作用,把溶解在水中的微量甲烷富集到四氯化碳溶液中,通过对其中溶解的CH4拉曼信号的探测以检验水中微量CH4的存在,以此提高实验室条件下水中溶解甲烷的探测灵敏度。在实验室条件(25℃,1atm)下,分别对CH4的饱和水溶液(浓度约为1.14mmol·L-1)、CCl4萃取液以及CH4的饱和CCl4溶液进行了光谱探测分析。结果表明,对CH4的饱和水溶液直接探测,未能获得CH4的拉曼信号;通过萃取辅助,成功地在CCl4萃取液中检测到CH4的拉曼信号,其强度与CH4的饱和CCl4溶液的信号强度相近,实现了在实验室条件下对水中溶存甲烷气体的探测。  相似文献   

11.
In this work, the decolorization of azo dye Orange G (OG) in aqueous solution by aluminum powder enhanced by ultrasonic irradiation (AlP-UI) was investigated. The effects of various operating operational parameters such as the initial pH, initial OG concentration, AlP dosage, ultrasound power and added hydrogen peroxide (H2O2) concentration were studied. The results showed that the decolorization rate was enhanced when the aqueous OG was irradiated simultaneously by ultrasound in the AlP-acid systems. The decolorization rate decreased with the increase of both initial pH values of 2.0–4.0 and OG initial concentrations of 10–80 mg/L, increased with the ultrasound power enhancing from 500 to 900 W. An optimum value was reached at 2.0 g/L of the AlP dosage in the range of 0.5–2.5 g/L. The decolorization rate enhanced significantly by the addition of hydrogen peroxide in the range of 10–100 mM to AlP-UI system reached an optimum value of 0.1491 min−1. The decolorization of OG appears to involve primarily oxidative steps, the cleavage of NN bond, which were verificated by the intermediate products of OG under the optimal tested degradation system, aniline and 1-amino-2-naphthol-6,8-disulfonate detected by the LC–MS.  相似文献   

12.
In the present work, ultrasound irradiation, photocatalysis with TiO2, Fenton/Photo-Fenton reaction, and the combination of those techniques were investigated for the decolorization of industrial dyes in order to study their synergy. Three azo dyes were selected from the weaving industry. Their degradation was examined via UV illumination, Fenton and Photo-Fenton reaction as well as ultrasound irradiation at low (20 kHz) and high frequencies (860 kHz). In these experiments, we investigated the simultaneous action of the ultrasound and UV irradiation by varying parameters like the duration of photocatalysis and ultrasound irradiation frequency. At the same time, US power, temperature, amount of TiO2 photocatalyst and amount of Fenton reagent remained constant. Due to their diverse structure, each azo dye showed different degradation levels using different combinations of the above-mentioned Advanced Oxidation Processes (AOPs). The Photo-Fenton reagent is more effective with US 20 kHz and US 860 kHz for the azo dyes originated from the weaving industry at pH = 3 as compared to pH = 6.8. The combination of the Photo-Fenton reaction with 860 kHz ultrasound irradiation for the same dye gave an 80% conversion at the same time. Experiments have shown a high activity during the first two hours. After that threshold, the reaction rate is decreased. FT-IR and TOC measurements prove the decolorization due to the destruction of the chromophore groups but not complete mineralization of the dyes.  相似文献   

13.
This investigation is intended to determine the catalytic effect of liquid plasma on TiO2, generated in situ on Ti anodes submerged in Na2SO4 electrolyte solution by observing the efficiency of the reaction in decolorizing a brilliant red B solution under voltage-stabilized DC power. The orthogonal test was performed in order to obtain the optimal reaction conditions for the test device. When placed under a constant voltage of 550 V, and with an electrode depth of 2 mm, Na2SO4 concentration of 5 g/L, pH of 2, the maximum decolorization ratio of 100 mL brilliant red B solution with the concentration of 20 mg/L was 97.8% after 40 min. The reaction rate constant was about 0.102 min?1, conforming to the first-order reaction kinetic model. Comparative tests were conducted with: Al electrode under 450 V; Mo electrode under 550 V; and a mixture of the electrolyte and TiO2 powder. The results showed that liquid plasma – TiO2 on the electrode of the catalytic system naturally integrated on the discharge electrode, with an increase in reaction rate by 26.8% while utilizing the same energy consumption.  相似文献   

14.
A comparative study between the sonolytic, photocatalytic and sonophotocatalytic oxidation processes of aqueous solutions of malachite green was carried out in the presence of carbon tetrachloride, under a low power ultrasonic field (<15 W) and using titanium dioxide as a photocatalyst. The effect of a number of parameters such as ultrasonic intensity, TiO2 crystalline structure and the presence of CCl4 were studied using an inexpensive reactor. Enhanced rates of sonolytic degradation of malachite green in the presence of CCl4 were demonstrated. On the other hand, the simultaneous use of sonolysis and photocatalysis in the presence of CCl4 does not improve the degradation rate of malachite green in comparison with the one obtained using only sonolysis, but it makes possible a faster oxidative degradation of some reaction intermediaries. Finally, in air saturated solutions both processes, the sonolytic and the photocatalytic one, follow a first-order rate law.  相似文献   

15.
The combination of ultrasound and the advanced Fenton process (AFP, zero-valent iron and hydrogen peroxide) for the degradation of C.I. Acid Orange 7 was studied. The effect of hydrogen peroxide concentration, initial pH, ultrasonic power density, dissolved gas, and iron powder addition on the decolorization of C.I. Acid Orange 7 was investigated. A modified pseudo-first order kinetic model was used to simulate the experimental results. The results showed that the decolorization rate increased with the increase of hydrogen peroxide concentration and power density, but decreased with the increase of initial pH value. There existed an optimal iron powder addition when decolorization rate was concerned. The decolorization efficiency also increased with the increase of hydrogen peroxide concentration, but decreased with the increase of initial pH value. It varied little at different power densities or iron powder additions at the fixed hydrogen peroxide concentration. The presence of dissolved gas would enhance color removal, and the enhancement was more significant when dissolved oxygen was present. More hydrogen peroxide dosage and reaction duration are required to achieve a relatively high COD removal than those employed to simply break the chromophore group.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(4):1489-1495
Ultrasound has been used as an advanced oxidation method for wastewater treatment. Sonochemical degradation of organic compounds in aqueous solution occurs by pyrolysis and/or reaction with hydroxyl radicals. Moreover, kinetics of sonochemical degradation has been proposed. However, the effect of ultrasonic frequency on degradation rate has not been investigated. In our previous study, a simple model for estimating the apparent degradation rate of methylene blue was proposed. In this study, sonochemical degradation of methylene blue was performed at various frequencies. Apparent degradation rate constant was evaluated assuming that sonochemical degradation of methylene blue was a first-order reaction. Specifically, we focused on effects of ultrasonic frequency and power on rate constant, and the applicability of our proposed model was demonstrated. Using this approach, maximum sonochemical degradation rate was observed at 490 kHz, which agrees with a previous investigation into the effect of frequency on the sonochemical efficiency value evaluated by KI oxidation dosimetry. Degradation rate increased with ultrasonic power at every frequency. It was also observed that threshold power must be reached for the degradation reaction to progress. The initial methylene blue concentration and the apparent degradation rate constant have a relation of an inverse proportion. Our proposed model for estimating the apparent degradation rate constant using ultrasonic power and sonochemical efficiency value can apply to this study which extended the frequency and initial concentration range.  相似文献   

17.
Here, the nanometer anatase and rutile titanium dioxide (TiO(2)) powders were introduced to act as the sonocatalysts during the ultrasonic degradation of azo dye-acid red B which was chosen as model compound. The ultrasound of low power was used as an irradiation source to induce TiO(2) particles performing catalytic activity. It was found that the processes of sonocatalytic degradation were different between nanometer anatase TiO(2) and nanometer rutile TiO(2). For nanometer anatase TiO(2) catalyst, the acid red B was mainly oxidated by the holes on the surface of nanometer anatase TiO(2) particles, so that the decolorization and degradation happened at the same time. For the nanometer rutile TiO(2) catalyst, the acid red B was mainly oxidated by the *OH radicals from the ultrasonic cavitation, so that the decolorization of azo bond takes place primarily, and then the degradation of naphthyl ring does. The intermediates of acid red B in the presence of nanometer anatase and rutile TiO(2) powders have been monitored by UV-vis spectra and high performance liquid chromatography (HPLC), respectively. All experiments indicated that the degradation effect of acid red B in the presence of nanometer anatase TiO(2) powder was obviously better than that in the presence of nanometer rutile TiO(2) powder. Hence, the method of sonocatalytic degradation for organic pollutants in the presence of nanometer anatase TiO(2) powder is expected to be promising as an advisable choice for the treatment of organic wastewaters in future.  相似文献   

18.
 We investigated the trans–cis photoisomerization of an azo dye in a rigid matrix and the resulting third-order resonant optical nonlinearity by means of the simple theoretical prediction of a two-energy-level system, thin-layer chromatography and H-NMR studies. A methylorange (MO), a methylred (MR), congored (CR) or a Disperse Red 1 (DR1) doped polyvinyl alcohol (PVA) or silica film was used as nonlinear optical material. The existence of equi-absorbing points, or isosbestic points in the absorbance spectrum change and the remarkable stationary transmittance to be independent of the action beam intensity enabled us to confirm the photoisomerization even in a rigid matrix. Then, we measured the third-order resonant optical nonlinearity of dichroism through the polarization absorbance spectrum measurement and determined the characteristic optical parameters of the photoisomerization in the film such as the quantum yields φT, φC, the thermal reaction constant K and the photoisomerization time constant by fitting the theoretical curve of the two-energy-level system to the observed temporal transmittance change after the action beam exposure of the MO/PVA film. The quantum yields were φˉT=0.36 and φˉC=0.38, respectively. The photoisomerization time constant of MO embedded in the PVA film was a few seconds. The thermal reaction constant K depended on the excitation beam intensity. Received: 20 June 1996/Revised version: 4 October 1996  相似文献   

19.
In this work, the degradation of dimethoate solution in ultrasonic airlift loop reactor (UALR) assisted with advanced oxidation processes was studied. The effects of O3 flow rate, ultrasonic intensity, pH value and reaction temperature on the degradation rate were investigated. UALR imposed a synergistic effect combining sonochemical merit with high O3 transfer rate. Under the optimal operation conditions: ultrasonic irradiation time was 4 h, O3 flow rate was 0.41 m3 h−1, ultrasonic intensity was 4.64 W cm−2, pH value was 10.0, reaction temperature was 25 °C, and initial concentration of dimethoate was 20 mg L−1, degradation rate of dimethoate increased to 90.8%. The experimental results indicated that the method of UALR degradation of organic pollutants in the presence of gas could reduce reaction time and improve degradation rate. UALR was an advisable choice for treating organic waste waters and this device could be easily scale up. Thus this process has wide application prospect in industry.  相似文献   

20.
The decolorization and degradation of Reactive Red 195 (RR 195) is studied using sonoelectrochemical and electrochemical oxidation. Sonoelectrochemical oxidation was found to be more efficient than electrochemical oxidation. The efficiency of decolorization was found to be 91% and 99% in the case of electrochemical and sonoelectrochemical process, respectively. The effect of different supporting electrolytes and ultrasonic power on decolorization and COD removal has been studied. The decolorization was found to be maximum in the KCl and NaCl as electrolytes. The color removal decreased with increasing ultrasonic power. Response surface methodology was used to assess optimal condition for decolorization and COD removal of RR 195. A Central Composite Design in five most important operating variables; current density, electrolyte concentration, dye concentration, time and sonication power was employed for experimental design and optimization of results. The significance of independent variables and their interactions were tested by means of the analysis of variance with 95% confidence limits. There was good agreement between the experimental and predicated values. Sonoelectrochemical degradation was found to be efficient in decolorizing simulated textile effluent. The results show that ultrasound was significantly enhanced in the electrochemical oxidation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号