首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nanometer scale cobalt thin films of different structures and thicknesses supported on glassy carbon were prepared by electrochemical deposition under cyclic voltammetric conditions (denoted nm-Co/GC(n)). The thickness of Co thin films was altered systematically by varying the number (n) of potential cycling within a defined potential range in electrodeposition. Electrochemical in situ scanning tunneling microscopy (STM) and ex situ scanning electron microscopy (SEM) were employed to characterize the surface structure of Co thin films. It has been illustrated that the Co thin films were uniformly composed of Co nanoparticles, whose structure and size varied with increasing n. The structure of nanoparticles inside the Co thin films underwent a transition from bearded nanoparticles to multiform nanoparticles and finally to hexagonal nanosheets, accompanying with an increase of average size. In situ FTIR reflection spectroscopic studies employing CO adsorption as probe reaction revealed that the Co thin films all exhibited anomalous IR properties; that is, along with their different nanostructures they presented abnormal IR effects, Fano-like IR effects, and surface-enhanced IR absorption effects. CO adsorbed on Co thin films dominated by bearded nanoparticles yielded abnormal IR absorption bands; that is, the direction of the bands is inverted completely, with enhanced intensity in comparison with those of CO adsorbed on a bulk Co electrode. The enhancement of abnormal IR absorption has reached a maximal value of 26.2 on the nm-Co/GC(2) electrode. Fano-like IR features, which describe the bipolar IR bands with their positive-going peak on the low wavenumbers side, were observed in cases of CO adsorbed on Co thin films composed mainly of multiform nanoparticles, typically on the nm-Co/GC(8) electrode. IR features were finally changed into surface-enhanced IR absorption as CO adsorbed on the nm-Co/GC(30) electrode, on which the Co thin film is dominated by Co hexagonal nanosheets.  相似文献   

2.
A Cu1O1.7 oxide film containing a large amout of superstoichiometric oxygen was obtained by low-temperature oxidation of metallic copper in the oxygen plasma. An STM study of the film structure showed that ~10 nm planar copper oxide nanocrystallites with particles packed parallel to the starting metal surface. In an XPS study, the spectral characteristics of the Cu2p and O1s lines indicated that particles with a CuO lattice formed (E bnd(Cu2p 3/2) = 933.3 eV and a shake-up satellite, E bnd(O1s) = 529.3 eV). The additional superstoichiometric oxygen is localized at the sites of contact of nanoparticles in the interunit space and is characterized by a state with the binding energy E bnd(O1s) = 531.2 eV. Due to the formation of a nanostructure in the films during low-temperature plasma oxidation, the resulting copper oxide has a much lower thermal stability than crystalline oxide CuO.  相似文献   

3.
One-dimensional (1D) CoPt nanorods were synthesized by a galvanic displacement reaction. The morphology of the nanomaterials was characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). Energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the coexistence of Co and Pt in the 1D nanorods. Studies of cyclic voltammetry (CV) demonstrated that the 1D CoPt nanorods exhibit a better electrocatalytic property for CO oxidation than that of bulk Pt electrode does. In situ electrochemical FTIRS illustrated, for the first time, that the 1D CoPt nanorods display abnormal infrared effects (AIREs), which was previously revealed mainly on 2D film nanomaterials.  相似文献   

4.
Conjugated phenylene-vinylene polymers are widely used in organic light-emitting and photovoltaic devices. The comprehension of the optical properties upon charge injection is of crucial importance for the improvement of such organoelectronic devices. The processes of electrochemical doping, electrolyte diffusion, and degradation have been studied by cyclic voltammetry and chronoamperometric methods. Kinetic studies by in situ fluorescence spectroscopy have been used for the determination of the mobility of charge carriers in the polymer making used of electrochemical Stern-Volmer analysis. The mobility of holes for MDMO-PPV measured by this method was 2.5 x 10(-7) cm2 V s(-1). Non-Faradic variations of the fluorescence after doping-dedoping cycles have been related to morphological changes in the polymeric layer. The evolution of the fluorescence obeys a first-order kinetics law, similarly to the trend of the variation of volume during gel shrinking.  相似文献   

5.
In situ electrochemical scanning tunneling microscopy is used to study the coarsening of platinum islands at potentials of 0.4, 0.5, and 0.6 V in the double-layer region. Several interesting surface island reconstruction processes were observed, namely, (1) growth of small polycrystalline platinum islands; (2) shape- and size-limited platinum island growth; and (3) growth of platinum islands accompanied by disappearance of nearby islands. It is evident that these potential-induced coarsening processes can be explained by Gibbs-Thomson theory as a variant of Ostwald ripening. Details of the island reconstruction processes are described, and the possible influences of these phenomena on fuel cell operation are discussed.  相似文献   

6.
Magnussen OM  Polewska W  Zitzler L  Behm RJ 《Faraday discussions》2002,(121):43-52; discussion 97-127
Atomic-scale dynamic processes during Cu(100) dissolution/deposition in pure and Cu-containing 0.01 M HCl solution were studied in situ by high-speed electrochemical STM (video-STM). Direct observations of the equilibrium fluctuations at atomic kinks in the steps on the crystal surface due to the local removal/addition of atoms reveal the same anisotropic behavior found previously in Cu-free electrolytes, caused by the influence of the ordered (2 x 2) Cl adlayer on the kink structure. A first quantitative analysis of these fluctuations and interpretation in terms of a local current exchange density was attempted. In addition, observations on the nucleation of vacancy- or ad-rows at terrace corners and within the Cu steps are presented and the relevance of these processes for the macroscopic current density is discussed.  相似文献   

7.
Platinum nanoparticles directly attached to indium tin oxide (PtNP/ITO) were successfully fabricated by using an in situ chemical reductive growth method. In this method, PtNPs could be grown on the ITO surface via the one-step immersion into the growth solution containing PtCl4(2-) and ascorbic acid. The attached and grown PtNPs were spherical having an agglomerated nanostructure composed of small nanoclusters. From the morphological changes depending on the growth time, which were observed with an FE-SEM, PtNPs were found to be grown via the progressive nucleation mechanism. As the characteristics of the PtNP/ITO were those of a working electrode, it was found that the charge transfer resisivity was significantly lowered due to the grown PtNPs. Hence, for a typical redox system of [Fe(CN)6]3-/[Fe(CN)6]4-, the PtNP/ITO electrode exhibited the electrochemical responses similar to those of the bulk Pt electrode. Furthermore, it was clarified that the PtNP/ITO electrode had significant electrocatalytic properties for the oxygen reduction and methanol oxidation. The present PtNPs that had the agglomerated nanostructure may be promising for a new type of electrode material.  相似文献   

8.
Electrochemical reduction of a variety of mono- and di-chloro- and bromo- phenols at a palladised titanium electrode afforded phenolate in all cases according to in situ FTIR studies, with the same intermediate species being observed in some cases.  相似文献   

9.
An in situ XPS study of oxidation-reduction processes on three perovskite oxide electrode surfaces was carried out by incorporating the materials in an electrochemical cell mounted on a heated sample stage in an ultrahigh vacuum (UHV) chamber. Electrodes made of powdered LaCr(1-x)Ni(x)O(3-delta) (x = 0.4, 1) showed changes in the XPS features of all elements upon redox cycling between formal Ni3+ and Ni2+ oxidation stoichiometries, indicating the delocalized nature of the electronic states involved and strong mixing of O 2p to Ni 3d levels to form band states. The surface also showed changes in adsorption capacity for CO2 upon reduction as a result of increased nucleophilicity of surface oxygen. Another perovskite oxide, La(0.5)Sr(0.5)CoO(3-delta), laser deposited as highly oriented thin films on (100) oriented yttria-stabilized zirconia (YSZ), also showed evidence of both local and nonlocal effects in the XPS features upon redox cycling. In contrast to LaCr(1-x)Ni(x)O(3-delta), redox cycling mainly affected the XPS features of cobalt with little effect on oxygen. This signifies reduced participation of O 2p states in the conduction band of this material. Small changes in surface cation stoichiometry in this film were observed and attributed to mobility of the A-site Sr dopant under polarization.  相似文献   

10.
Optical properties of a blend thin film (1:1 wt) of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) exposed to a stepwise heating and cooling, have been reported and compared with the properties of pure PCBM and P3HT films. The UV–Vis(T) absorption measurements were performed in situ, during annealing and cooling runs, at the precisely defined temperatures, in a range of 20–210 °C. It was demonstrated that this new method allows to observe the changes of absorption coefficient spectra and absorption edge parameters: the energy gap (EG) and the Urbach energy (EU), connected with the length of conjugation and structural disorder of thin film, respectively. Several stages, during annealing/cooling runs, were distinguished for the P3HT:PCBM blend film and related to the following processes, as an increase of P3HT crystallinity in the blend, the orderly stacking of polymer chains, thermally induced structural defects and the phase separation, caused by an aggregation of PCBM in the polymer matrix. These changes were also observed on the P3HT:PCBM film surface, by means to the microscopic studies.  相似文献   

11.
The crystalline to liquid crystalline (Cr-LC) phase transition in thin films of zone-cast hexa-peri-hexabenzocoronene sixfold substituted with dodecyl side chains (HBC-C12H25) has been studied in detail using grazing incidence X-ray diffraction (GID), electron diffraction (ED), and variable angle spectroscopic ellipsometry (VASE), When heating the material, a first minor transition is observed around 42 degrees C. This change is attributed to alterations of the crystalline alkyl chain packing, which only slightly changes the electronic properties of the material. At higher temperatures of about 90 degrees C, but still significantly below the previously reported transition temperature in bulk, the Cr-LC transition is observed. An accompanying large increase in optical anisotropy is compatible with the X-ray data, showing a transition from the as-cast herringbone-like crystalline state to a highly ordered discotic hexagonal columnar LC phase. The structural transition has the macroscopic effect of increasing the film thickness. The high structural order of the as-cast low-temperature phase is only partly recovered after cooling, and the phase transition exhibits a large hysteresis. From the ellipsometry data, the dielectric tensor of HBC-C12H25 was refined to unprecedented detail.  相似文献   

12.
近年来,水分解、氧气/二氧化碳还原等电化学能源转换技术为解决全球能源短缺及环境问题提供了新的思路和方向.然而,对这些能源转换技术的反应机理及其催化剂的活性位点目前仍缺乏深刻的认识和理解,这限制了高效、稳定催化剂的开发,以致阻碍该类电化学技术的进一步发展.原位光谱技术的快速发展为解决上述问题提供了坚实的基础,其中拉曼光谱...  相似文献   

13.
We provide an electrochemical and structural characterization by in situ STM of Au(111)/Os electrodes prepared by spontaneous deposition of Os on Au(111). Surfaces with Os coverage values up to the saturation coverage were examined, from 10%. Using comparisons to previous work on Au(111)/Ru, Pt(111)/Ru, and Pt(111)/Os, we find that we may now generalize that Os deposits spontaneously faster than Ru and has a greater tendency to form 3-D structures. Additionally, the Au(111) substrate shows preferential step and near-step decoration in both cases, although it is less pronounced for Os than Ru. We also investigated the incremental dissolution of the Os from Au(111), to better understand electrochemical dissolution processes in general and to better control the Os deposit structure. The application of controlled electrochemical treatments (cyclic voltammetry up to increasingly positive values) significantly increased the dispersion of the Os deposit by generating smaller, more widely spaced islands. Upon voltammetry up to 0.75 V, the Au(111)/Os surface showed evidence of alloying and the formation of 3-D structures suggestive of strong Os-Os (oxidized) species interactions. The CO stripping results show the Au(111)/Os is not particularly effective for this reaction, but such results help to complete the overall picture of NM-NM catalytic combinations. Although the Au(111)/Os system itself is not catalytically active, the electrochemical manipulation of the deposit structure demonstrated here may be applied to other noble metal/noble metal (NM/NM) catalytic substrates to find optimal deposit morphologies.  相似文献   

14.
An electrochemical liquid-liquid-solid (ec-LLS) process that produces large amounts of crystalline semiconductors with tunable nanostructured shapes without any physical or chemical templating agent is presented. Electrodeposition of Ge from GeO(2)(aq) solutions followed by dissolution into a liquid Hg electrode, saturation of the liquid alloy, and precipitation can yield polycrystalline Ge(s) under ambient conditions. A unique advantage of ec-LLS is that it involves precipitation under electrochemical control, where the applied bias precisely defines the flux of Ge into the liquid electrode. Fidelity of the saturation and precipitation of Ge from liquid electrodes affords a variety of material morphologies, including dense films of oriented nanostructured filaments with large aspect ratios (>10(3)). Electrodeposition involving a liquid electrolyte, a liquid electrode, and a solid deposit under ambient conditions represents a conceptually unexplored direct wet-chemical route for the preparation of bulk quantities of crystalline group-IV semiconductors without the time- and energy-intensive processing steps required in traditional preparations of semiconductor materials.  相似文献   

15.
The electrochemical formation and dissolution of a lead/copper surface alloy on Cu(100) in chloride-containing electrolyte solutions were studied on the atomic scale by in situ scanning tunneling microscopy with high temporal and spatial resolution. Alloy formation, induced by a negative potential sweep, starts predominantly at the Cu steps, followed by the formation of a novel transient (4 × 3) alloy phase with 0.25 ML Pb coverage, which continuously is transformed into the 0.375 ML coverage c(4 × 4) phase, observed under UHV conditions. Both of these phases consist of rows of Pb atoms embedded into the Cu surface and exhibit highly dynamic structural fluctuations on sub 100 ms time scales. Upon increasing the potential again, a second c(4 × 4) phase with a different appearance in the STM images forms, which is attributed to partial dealloying, involving desorption of Pb from energetically less favorable sites. Further dealloying results in the formation of ribbon-like structures, already reported in previous studies. These ribbons are shown to consist of Pb atoms decorating domain boundaries in the c(2 × 2) chloride adlayer, left behind on the Cu surface by the dissolving surface alloy phase. Furthermore, dynamic observations of the subsequent coarsening of the ribbon network and the attachment/detachment of isolated Pd adsorbates to the ribbons are presented. Both isolated Pb adsorbates and Pb atoms in the ribbons are proposed to be stabilized by coadsorbed Cl.  相似文献   

16.
The carbon nanotube/polyaniline (CNT/PANI) composites have important potential applications as the electrodes in energy storage devices for their attractive electrochemical properties. In this work, we report a novel method to prepare the interesting paper-like CNT/PANI composites by using the CNT network as the template. Compared with the conventional brittle CNT/PANI composites, these paper-like composites were much thin and flexible. This work demonstrates a new approach, which may transform a brittle polymer into flexible films. Meanwhile, these film electrodes showed much superior electrochemical performance such as higher specific capacitance, lower internal resistivity, and more stability under different current loads. These paper-like composite electrodes have promising applications in new kinds of energy storage devices.  相似文献   

17.
Chemical vapour deposition (CVD) method, via polycondensation reaction, is used to obtain poly(1,4-phenylene-methylidynitrilo-1,4-phenylenenitrilomethylidyne) (PPI) thin films. The iodine (I2) doping process of these films is observed in situ, by means of changes of the absorbance spectra. A distinct reduction of the energy gap, being a result of p-type doping, is connected with extracting electrons from π-conjugated system and formation of the polaron states inside the gap. On the basis of UV–Vis–NIR(T) experiments, the heat treatment effect on the absorption coefficient spectra of iodine doped PPI thin films is reported, as a new method, to estimate thermal stability and to obtain the border temperature of doped polymer films. Moreover it is demonstrated that the analysis of absorption bands (shape, level and position) and absorption edge parameters, such as the Urbach energy (EU) and the energy gap (EG) can be used to evaluate the changes of polymer chain conformation and conjugation.  相似文献   

18.
Nanostructured polyaniline films could be easily in situ polymerized on microslides via rapidly mixing aniline with ammonium persulfate in acid solution. The influence of different conditions including aniline, acid concentration, reaction time and acid kinds on the morphology and thickness of the resulting films was studied. The gas-sensing behavior of the nanostructured films to 100 ppm of NH3 was investigated through monitoring the change of the resistance.  相似文献   

19.
Single-crystalline Ni nanowires have been successfully fabricated with anodic aluminum oxide as template by electrodeposition. Structural characterization (X-ray diffraction, XRD, and high-resolution transmission electron microscopy, HRTEM) shows that the single-crystalline Ni nanowire has a preferred orientation along the [220] direction. The effects of electrochemical deposition conditions on the structure of Ni nanowires are systematically studied to investigate the growth mechanism. Possible reasons for the growth of the single-crystalline Ni nanowires were discussed on the basis of electrochemistry and thermodynamics. These single-crystalline Ni nanowires have exhibited excellent magnetic properties (large anisotropy, large coercivity, and high remanence). By a similar process, single-crystalline Co nanowires with hexagonal close-packed (hcp) structure were achieved, also having large anisotropy, large coercivity (1.8 kOe), and high remanence ratio (80.8%).  相似文献   

20.
Platelet- and fibrillar-structured V2O5 films have been prepared by solution methods, and their electrochemical Li+ intercalation properties have been studied. Platelet film consists of 20-30 nm sized V2O5 particles with random orientation, whereas fibrillar film is comprised of randomly oriented fibers though most of them protrude from the substrate surface. These platelet- and fibrillar-structured films exhibit relatively larger surface area and shorter diffusion path for Li+ intercalation than plain thin film structure. The processing methods, the discharge capacity, and cyclic performance of these films are compared with those of the conventional plain structured film.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号