首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Simultaneous measurements of PLIF-kerosene and PLIF-OH have been successfully performed in a multipoint injection system for various overall equivalence ratio, air inlet temperature between 480 and 730 K and pressure up to 2.2 MPa. Single shot 2D-maps of the spatial distribution of kerosene vapour and OH radical in the combustor have been recorded with good signal-to-noise ratio. Results show that depending on the split between the pilot and the main injectors, the flame front exhibits a single or a double structure. Good spatial correlation between the repartition of the kerosene vapour and the position of the flame front was observed; in particular, no “dark zone” is observed between the fuel and the flame front. As temperature and pressure increase, fuel evaporation improves and the spatial distribution of OH radical becomes more homogeneous in the combustor, suggesting a partially-distributed combustion. To cite this article: M. Orain et al., C. R. Mecanique 337 (2009).  相似文献   

2.
Very different materials are named ‘Glass’, with Young's modulus E and Poisson's ratio ν extending from 5 to 180 GPa and from 0.1 to 0.4, respectively, in the case of bulk inorganic glasses. Glasses have in common the lack of long range order in the atomic organization. Beside the essential role of elastic properties for materials selection in mechanical design, we show in this analysis that macroscopical elastic characteristics (E,ν) provide an interesting way to get insight into the short- and medium-range orders existing in glasses. In particular, ν, the packing density (Cg) and the glass network dimensionality appear to be strongly correlated. Networks consisting primarily of chains and layers units (chalcogenides, low Si-content silicate glasses) correspond to ν>0.25 and Cg>0.56, with maximum values observed for metallic glasses (ν0.4 and Cg>0.7). On the contrary, ν<0.25 is associated to a highly cross-linked network with a tri-dimensional organization resulting in a low packing density. Moreover, the temperature dependence of the elastic moduli brings a new light on the ‘fragility’ of glasses (as introduced by Angell) and on the level of cooperativity of atomic movements at the source of the deformation process. To cite this article: T. Rouxel, C. R. Mecanique 334 (2006).  相似文献   

3.
We investigate the behavior of fluid–particle mixtures subject to shear stress, by mean of direct simulation. This approach is meant to give some hints to explain the influence of interacting red cells on the global behavior of the blood. We concentrate on the apparent viscosity, which we define as a macroscopic quantity which characterizes the resistance of a mixture against externally imposed shear motion. Our main purpose is to explain the non-monotonous variations of this apparent viscosity when a mixture of fluid and interacting particles is submitted to shear stress during a certain time interval. Our analysis of these variations is based on preliminary theoretical remarks, and some computations for some well-chosen static configurations. To cite this article: A. Lefebvre, B. Maury, C. R. Mecanique 333 (2005).  相似文献   

4.
The quasi-static ion approximation of Stark broadened spectral lines involves an average of the field-dependent line shape over the microfield probability distribution. In the conventional approach, this can become computationally expensive since the calculation at each field point requires inverting a possibly large matrix. It is shown that these calculations are well suited to the “Padé Via Lanczos” approach, which allows for an efficient and accurate numerical integration over the quasi-static field. In turn, the integration forms the basis for determining convergence with Lanczos iterations. Simple examples are used to demonstrate improved performance over conventional methods.  相似文献   

5.
This Note is devoted to the experimental verification of the Onsager's reciprocal relations in the particular case of electro-osmosis and electro-filtration. A special set up has been designed to carry out the measurements of both the electro-osmotic permeability and the streaming potential. This has been performed by using a natural material i.e., saturated kaolinite. To cite this article: K. Beddiar et al., C. R. Mecanique 330 (2002) 893–898.  相似文献   

6.
The elastic solution in a vicinity of a re-entrant wedge can be described by a Williams like expansion in terms of powers of the distance to a point on the edge. This expansion has a particular structure due to the invariance of the problem by translation parallel to the edge. We show here that some terms, so-called primary solutions, derive directly from solutions to the 2-D corner problem posed in the orthogonal cross section of the domain. The others, baptized shadow functions, derive of the primary solutions by integration along the axis parallel to the edge. This 3-D Williams expansion is shown to be equivalent to the edge expansion proposed by Costabel et al. [M. Costabel, M. Dauge, Z. Yosibash, A quasidual function method for extracting edge stress intensity functions, SIAM J. Math. Anal. 35 (5) (2004) 1177–1202]. To cite this article: T. Apel et al., C. R. Mecanique 336 (2008).  相似文献   

7.
In a previous article the authors introduced a Lagrange multiplier based fictitious domain method. Their goal in the present article is to apply a generalization of the above method to: (i) the numerical simulation of the motion of neutrally buoyant particles in a three-dimensional Poiseuille flow; (ii) study – via direct numerical simulations – the migration of neutrally buoyant balls in the tube Poiseuille flow of an incompressible Newtonian viscous fluid. Simulations made with one and several particles show that, as expected, the Segré–Silberberg effect takes place. To cite this article: T.-W. Pan, R. Glowinski, C. R. Mecanique 333 (2005).  相似文献   

8.
We derive a closed system of effective equations describing a time-dependent flow of a viscous incompressible Newtonian fluid through a long and narrow elastic tube. The 3D axially symmetric incompressible Navier–Stokes equations are used to model the flow. Two models are used to describe the tube wall: the linear membrane shell model and the linearly elastic membrane and the curved, linearly elastic Koiter shell model. We study the behavior of the coupled fluid–structure interaction problem in the limit when the ratio between the radius and the length of the tube, , tends to zero. We obtain the reduced equations that are of Biot type with memory. An interesting feature of the reduced equations is that the memory term explicitly captures the viscoelastic nature of the coupled problem. Our model provides significant improvement over the standard 1D approximations of the fluid–structure interaction problem, all of which assume an ad hoc closure assumption for the velocity profile. We performed experimental validation of the reduced model using a mock circulatory flow loop assembled at the Cardiovascular Research Laboratory at the Texas Heart Institute. Experimental results show excellent agreement with the numerically calculated solution. Major applications include blood flow through large human arteries. To cite this article: S. Čanić et al., C. R. Mecanique 333 (2005).  相似文献   

9.
We consider the problem of solving the integral form of the radiative transfer equation in an atmosphere with optical thickness τ01. We propose a method transforming this problem in the same problem posed in an atmosphere with optical thickness τ1τ0. An error over- estimation is derived. To cite this article: A. Amosov et al., C. R. Mecanique 331 (2003).  相似文献   

10.
We consider an elasticity problem in a domain Ω()F(), where Ω is an open bounded domain in R3, F() is a connected nonperiodic set in Ω like a net of slender bars, and is a parameter characterizing the microstructure of the domain. We consider the case of a surface distribution of the set F(), i.e., for sufficiently small , the set F() is concentrated in arbitrary small neighbourhood of a surface Γ. Under a hypothesis on the asymptotic behaviour of the energy functional, we obtain the macroscopic (homogenized) model. To cite this article: M. Goncharenko, L. Pankratov, C. R. Mecanique 331 (2003).  相似文献   

11.
We study the initial-boundary value problems for a system of operator-differential equations describing Ishlinskii type viscoelastoplastic body longitudinal vibrations with rapidly oscillating nonsmooth coefficients and initial data. The main feature is an presence of hysteresis Prandtl–Ishlinskii operator. We rigorously justify the passage to the corresponding limit initial-boundary value problems for a system of two-scale homogenized operator-integro-differential equations, including the existence theorem for the limit problems. The results are global with respect to the time interval and the data. To cite this article: A. Amosov, I. Goshev, C. R. Mecanique 334 (2006).  相似文献   

12.
We study the flow of a viscous fluid through a pipe with helical shape parameterized with , where the small parameter stands for the distance between two coils of the helix. The pipe has small cross-section of size . Using the asymptotic analysis of the microscopic flow described by the Navier–Stokes system, with respect to the small parameter that tends to zero, we find the effective fluid flow described by an explicit formula of the Poisseuile type including a small distorsion due to the particular geometry of the pipe. To cite this article: E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).

Résumé

On considère un écoulement dans un tube de section circulaire et de forme hélicoïdale paramétré par , où est la distance entre deux tours de la spirale. Le rayon de la section du tube est lui aussi supposé égal à . A partir de l'écoulement microscopique décrit par le système de Navier–Stokes et en utilisant l'analyse asymptotique par rapport à ce petit paramètre on obtient l'écoulemment effectif décrit par une formule explicite de type Poiseuille associée à une petite déviation due à la géometrie du tube. Pour citer cet article : E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).  相似文献   

13.
This Note is dedicated to the numerical treatment of the ill-posed Cauchy–Helmholtz problem. Resorting to the domain decomposition tools, these missing boundary data are rephrased through an ‘interfacial’ equation. This equation is solved via a preconditioned Richardson algorithm with dynamic relaxation. The efficiency of the proposed method is illustrated by some numerical experiments. To cite this article: R. Ben Fatma et al., C. R. Mecanique 335 (2007).  相似文献   

14.
We study experimentally the impact of a plastic bead on a rotating wall made of steel (velocity Ω; radial position x0). The results show that the restitution coefficient is directly function of the impact velocity x0Ω and is invariant by changing frame reference. The influence of the height of release of the particle on its angular velocity after impact is also studied. We observe an increase of the angular velocity with height followed by a saturation. We propose an interpretation for this evolution considering that the particle may roll without sliding during all the impact. This physical feature is not always taken into account in existing models of impact between rigid bodies. To cite this article: F. Rioual et al., C. R. Mecanique 336 (2008).  相似文献   

15.
In this work we present an experimental apparatus devoted to the thermal characterisation of a milling tool. The experimental device used thermistors, one for each insert. Each thermistor is located at a point in the tool close to the tip of the insert. The heat flux in each insert is expressed according to the temperature at the sensor from a non-integer model. The parameters of the model are identified from transient evolutions measurements of the temperature on the sensor and on the cutting edge. An application shows the difference in the behaviour of each insert during machining from the estimated heat fluxes. To cite this article: J.-L. Battaglia et al., C. R. Mecanique 330 (2002) 857–864.  相似文献   

16.
An experimental mixing layer in water at Reynolds number 440 is investigated. A colored viscoelastic solution is introduced in the shear layer before the roll-up dynamics. On the basis of flow visualization and local velocity measurements, it is found that compared to the Newtonian case, the roll-up process is affected by the non-Newtonian behavior of the viscoelastic solution. The effect consists of the appearance of secondary eddies in the mixing layer corresponding to the production of higher harmonics in the vorticity distribution. Consequently, there is a frequency doubling of the local velocity oscillations in the mixing layer. To cite this article: F. Sausset et al., C. R. Mecanique 332 (2004).

Résumé

Une étude expérimentale de la couche de mélange à un nombre de Reynolds de 440 est réalisée. Une solution viscoélastique colorée est introduite dans la couche cisaillée stationnaire juste avant la formation des tourbillons. En utilisant un mesure locale de la vitesse et une technique de visualisation par fluorescence, il est montré que la formation tourbillonnaire est affectée par le comportement non-Newtonien de la solution viscoélastique par rapport au cas Newtonien. Cet effet correspond à la formation de tourbillons secondaires produisant un harmonique supérieur dans la répartition spatiale de vorticité. En conséquence, un doublement de la fréquence des oscillations de la vitesse locale dans la couche de mélange est observé. Pour citer cet article : F. Sausset et al., C. R. Mecanique 332 (2004).  相似文献   

17.
We construct the asymptotics (as ε→0) of solutions to the Neumann problem for the Laplace equation and of the corresponding Dirichlet integral. The problem concerns a three-dimensional domain having two connected components of the boundary at the distance ε>0. To cite this article: G. Cardone et al., C. R. Mecanique 335 (2007).  相似文献   

18.
We present experimental results on the interaction of short-pulse ultra-high-intensity laser beams with small size (“mass-limited”) targets. Several diagnostics (X-ray spectroscopy, Kα and optical imaging of target rear side) have been simultaneously used in order to characterize the laser-generated fast electron transport and energy deposition into the target material. Our results show that fast electrons are effectively confined inside the target by the induced space charge. This electrostatic confinement opens new opportunities to create “Warm Dense Matter” states characterized by solid-state density and temperatures of the order of a few tens of eV.  相似文献   

19.
This paper presents new bounds for heterogeneous plates which are similar to the well-known Hashin–Shtrikman bounds, but take into account plate boundary conditions. The Hashin–Shtrikman variational principle is used with a self-adjoint Green-operator with traction-free boundary conditions proposed by the authors. This variational formulation enables to derive lower and upper bounds for the effective in-plane and out-of-plane elastic properties of the plate. Two applications of the general theory are considered: first, in-plane invariant polarization fields are used to recover the “first-order” bounds proposed by Kolpakov [Kolpakov, A.G., 1999. Variational principles for stiffnesses of a non-homogeneous plate. J. Meth. Phys. Solids 47, 2075–2092] for general heterogeneous plates; next, “second-order bounds” for n-phase plates whose constituents are statistically homogeneous in the in-plane directions are obtained. The results related to a two-phase material made of elastic isotropic materials are shown. The “second-order” bounds for the plate elastic properties are compared with the plate properties of homogeneous plates made of materials having an elasticity tensor computed from “second-order” Hashin–Shtrikman bounds in an infinite domain.  相似文献   

20.
A discrete model of a woven fabric structure is established, whereby nodes endowed with a mass and a rotational rigidity are connected by rigid bars to form a two-dimensional truss. The set of four bars that delineate a quadrilateral area is further endowed with a torsion deformation mode. The kinematics of the truss reproduces the large rotations and displacements encountered for real tissues. The equilibrium shape of such a structure is obtained as the minimum of its total potential energy versus the whole set of kinematic translational and rotational variables, accounting for eventual kinematic constraints due to contact with a rigid surface by the Lagrange multipliers method. A stability analysis is conducted, and the potentiality of the model is illustrated by fabric draping simulations. To cite this article: B. Ben Boubaker et al., C. R. Mecanique 330 (2002) 871–877.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号