首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We show that there is a threshold in energy for the onset of chaos in cosmology for the Universe described as a dynamical system derived from the Einstein equations of General Relativity (GR). In the case of the mixmaster model (homogeneous and anisotropic cosmology with a Bianchi IX metric), the chaos occurs precisely at the prescribed necessary value H vac=0 of the GR for the energy of the Universe while the system is found to be regular for H<0 and chaotic for H>0 with respect to its pure vacuum part. In the case of generalized scalar tensor theories within the Bianchi IX model, we show using the ADM formalism and a conformal transformation that the energy of the dynamical system as compared to vacuum lies below the zero energy threshold. The system is thus not exhibiting chaos and the conclusion still holds in the presence of ordinary matter as well. The suppression of chaos occurs in a similar way for stiff matter alone.  相似文献   

2.
The ionization of Rydberg hydrogen atoms near a metal surface at different scaled energies above the classical saddle point energy has been discussed by using the semiclassical method. The results show that the atoms ionize by emitting a train of electron pulses. In order to reveal the chaotic and escape dynamical properties of this system in detail, the sensitive dependence of the ionization rate upon the scaled energy is discussed. As the scaled energy is close to the saddle point energy, the ionization process of the hydrogen atom is nearly the same as the case of hydrogen atom in an electric field. There is only a single pulse of electrons, with an exponentially decaying tail. With the increase of the scaled energy, the ionization rates are similar to the case of the hydrogen atom in parallel electric and magnetic field, a series of electron pulses appear in the ionization process. This is caused by classical chaos, which occurs for the metal surface. Our studies also suggest that the metal surface can play the role of both the electric and the magnetic fields. Our theoretical analysis will be useful for guiding experimental studies of the ionization of atoms near the metal surface.  相似文献   

3.
4.
This paper reviews experimental and theoretical work carried out on space charge instabilities and temporal chaotic behavior in cooled extrinsic p-type Germanium photoconductors. Measured dc current-voltage (I–V) characteristics of these devices are strongly nonlinear for moderate electric fields 0.1 V/cm due to field dependence of the rates of free hole capture and impurity impact ionization. Below the threshold field for impurity breakdown, Ge samples behave like damped nonlinear oscillators, exhibiting characteristic chaotic response when driven by a time-periodic voltage. Above impurity breakdown, we observe voltage-controlled negative differential resistance (NDR) in the I–V curves accompanied by spontaneous current oscillations due to moving space charge domains with velocities 103 to 104 cm/s. Measurements are well explained by a simple rate equation model in which negative differential behavior in the impact ionization rate plays a crucial role. Related work on semiconductor chaos and possible future directions for research are also mentioned.  相似文献   

5.
We study the problem of two interacting particles in the classical Harper model in the regime when one-particle motion is absolutely bounded inside one cell of periodic potential. The interaction between particles breaks integrability of classical motion leading to emergence of Hamiltonian dynamical chaos. At moderate interactions and certain energies above the mobility edge this chaos leads to a chaotic propulsion of two particles with their diffusive spreading over the whole space both in one and two dimensions. At the same time the distance between particles remains bounded by one or two periodic cells demonstrating appearance of new composite quasi-particles called chaons. The effect of chaotic delocalization of chaons is shown to be rather general being present for Coulomb and short range interactions. It is argued that such delocalized chaons can be observed in experiments with cold atoms and ions in optical lattices.  相似文献   

6.
We study two-component Bose-Einstein condensates that behave collectively as a spin system obeying the dynamics of a quantum kicked top. Depending on the nonlinear interaction between atoms in the classical limit, the kicked top exhibits both regular and chaotic dynamical behavior. The quantum entanglement is physically meaningful if the system is viewed as a bipartite system, where the subsystem is any one of the two modes. The dynamics of the entanglement between the two modes in this classical chaotic system has been investigated. The chaos leads to rapid rise and saturation of the quantum entanglement. Furthermore, the saturated values of the entanglement fall short of its maximum. The mean entanglement has been used to clearly display the close relation between quantum entanglement and underlying chaos.  相似文献   

7.
We present comprehensive results of numerical studies on the dynamical properties of a multimode ring laser under modulation of the population inversion in the bad-cavity condition. Incoherent properties of unstable oscillations in this system are investigated in detail as a function of two control parameters: the dc component of the population inversion and the modulation amplitude. Two kinds of optical chaos in two limiting regions reported in a previous paper are extensively studied to clarify their different characteristics from deterministic and stochastic points of view. The competition between their different origins is revealed. Statistical properties of their stochasticity are investigated to clarify their non-Gaussian natures. Comparison with analytical results for a single-mode laser with fluctuations is also made.  相似文献   

8.
Recent experiments with Bose–Einstein condensates (BEC) in traps and speckle potentials have explored the dynamical regime in which the evolving BEC clouds localize due to the influence of classical dynamics. The growth of their mean energy is effectively arrested. This is in contrast with the well-known localization phenomena that originate due to quantum interferences. We show that classically induced localization can also be obtained in a classically chaotic, non-interacting system. In this work, we study the classical and quantum dynamics of non-interacting particles in a double-barrier structure. This is essentially a non-KAM system and, depending on the parameters, can display chaotic dynamics inside the finite well between the barriers. However, for the same set of parameters, it can display nearly regular dynamics above the barriers. We exploit this combination of two qualitatively different classical dynamical features to obtain saturation of energy growth. In the semiclassical regime, this classical mechanism strongly influences the quantum behaviour of the system.  相似文献   

9.
A semiclassical theory of a dissipative Henon—Heiles system is proposed. Based on -scaling of an equation for the evolution of the Wigner quasiprobability distribution function in the presence of dissipation and thermal diffusion, we derive a semiclassical equation for quantum fluctuations, governed by the dissipation and the curvature of the classical potential. We show how the initial quantum noise gets amplified by classical chaotic diffusion, which is expressible in terms of a correlation of stochastic fluctuations of the curvature of the potential due to classical chaos, and ultimately settles down to equilibrium under the influence of dissipation. We also establish that there exists a critical limit to the expansion of phase space. The limit is set by chaotic diffusion and dissipation. Our semiclassical analysis is corroborated by numerical simulation of a quantum operator master equation.  相似文献   

10.
Quantum entanglement between two field modes can be achieved through the collective squeezing of the two respective modes. If single-mode squeezing is performed prior to such a two-mode squeezing, an enhancement of entanglement production can happen. Interestingly, the occurrence of this enhancement can be implicitly linked to the local classical dynamical behavior via the paradigm of quantum–classical correspondence. In particular, the entanglement generated through quantum chaos is found to be hardly enhanced by prior squeezing, since it is bounded by the saturation value of the maximally entangled Schmidt state with fixed energy. These results illustrate that entanglement enhancement via initial squeezing can serve as a useful indicator of quantum chaotic behaviour.  相似文献   

11.
The collision term has been deduced based on the effective Lagrangian in addition to the mean-field. We propose the momentum- and density-dependent coupling strengths for scalar and vector fields. The saturation properties of nuclear matter, the experimental data of the energy-dependent optical potential and the mean free path in the nuclei can be reproduced simultaneously. The in-mediumn–n cross section has also been calculated for different densities and energies, our results are consistent with Dirac-Brueckner-Hartree-Fock calculations.Supported by National Natural Science Foundation of China  相似文献   

12.
The dynamics of cold atoms in conservative optical lattices obviously depends on the geometry of the lattice. But very similar lattices may lead to deeply different dynamics. In a 2D optical lattice with a square mesh, it is expected that the coupling between the degrees of freedom leads to chaotic motions. However, in some conditions, chaos remains marginal. The aim of this paper is to understand the dynamical mechanisms inhibiting the appearance of chaos in such a case. As the quantum dynamics of a system is defined as a function of its classical dynamics – e.g. quantum chaos is defined as the quantum regime of a system whose classical dynamics is chaotic – we focus here on the dynamical regimes of classical atoms inside a well. We show that when chaos is inhibited, the motions in the two directions of space are frequency locked in most of the phase space, for most of the parameters of the lattice and atoms. This synchronization, not as strict as that of a dissipative system, is nevertheless a mechanism powerful enough to explain that chaos cannot appear in such conditions.  相似文献   

13.
14.
蒋亦民 《物理学报》1993,42(11):1735-1740
用数值方法研究了一耦合自旋模型的最近邻能级间距涨落和能级随参数变化曲线的免交叉行为。计算结果表明,当变化参数,系统的经典运动出现从规则→混沌→规则的转变时,间距涨落分布P(s)的Brody参数很好地反映了混沌区域在相空间中占据的比例。在有大量混沌运动的参数范围里,计算观察到了大量的免交叉及它们的重叠,并且能级曲线图呈现相对无规的形貌。这些结果被看作经典混沌在量子能谱中的表现或痕迹。 关键词:  相似文献   

15.
We study the front propagation in reaction-diffusion systems whose reaction dynamics exhibits an unstable fixed point and chaotic or noisy behaviour. We have examined the influence of chaos and noise on the front propagation speed and on the wandering of the front around its average position. Assuming that the reaction term acts periodically in an impulsive way, the dynamical evolution of the system can be written as the convolution between a spatial propagator and a discrete-time map acting locally. This approach allows us to perform accurate numerical analysis. They reveal that in the pulled regime the front speed is basically determined by the shape of the map around the unstable fixed point, while its chaotic or noisy features play a marginal role. In contrast, in the pushed regime the presence of chaos or noise is more relevant. In particular the front speed decreases when the degree of chaoticity is increased, but it is not straightforward to derive a direct connection between the chaotic properties (e.g. the Lyapunov exponent) and the behaviour of the front. As for the fluctuations of the front position, we observe for the noisy maps that the associated mean square displacement grows in time as t 1/2 in the pushed case and as t 1/4 in the pulled one, in agreement with recent findings obtained for continuous models with multiplicative noise. Moreover we show that the same quantity saturates when a chaotic deterministic dynamics is considered for both pushed and pulled regimes. Received 17 July 2001  相似文献   

16.
The semiclassical motion of an electron along the axis of a superlattice may be calculated from the miniband dispersion curve. Under a weak electric field the electron executes Bloch oscillations which confines the motion along the superlattice axis. When a magnetic field, tilted with respect to the superlattice axis, is applied the electron orbits become chaotic. The onset of chaos is characterised by a complex mixed stable-chaotic phase space and an extension of the orbital trajectories along the superlattice axis. This delocalisation of the orbits is also reflected in the quantum eigenstates of the system some of which show well-defined patterns of high probability density whose shapes resemble certain semiclassical orbits. This suggests that the onset of chaos will be manifest in electron transport through a finite superlattice. We also propose that these phenomena may be observable in the motion of trapped ultra-cold atoms in an optically induced superlattice potential and magnetic quadrupole potential whose axis is tilted relative to the superlattice axis.  相似文献   

17.
The dynamical properties of exciton transfer coupled to polarization vibrations in a two site system are investigated in detail. A fixed point analysis of the full system of Bloch-oscillator equations representing the coupled excitonic-vibronic flow is performed. For overcritical polarization a bifurcation converting the stable bonding ground state to a hyperbolic unstable state which is basic to the dynamical properties of the model is obtained. The phase space of the system is generally of a mixed type: Above bifurcation chaos develops starting from the region of the hyperbolic state and spreading with increasing energy over the Bloch sphere leaving only islands of regular dynamics. The behaviour of the polarization oscillator accordingly changes from regular to chaotic.  相似文献   

18.
The plasma chaotic system is a dissipative dynamical system modeled by a parametric plasma instability arising from the interaction of the whistler and ion acoustic waves with the plasma oscillation near the lower hybrid resonance. The amplitudes of these three oscillations obey a three-dimensional system of ordinary differential equations that exhibits chaos for certain parameter values. Besides the maximal Lyapunov exponent technique, a generalized-competitive-mode (GCM) technique has been proposed to evaluate parameter values associated with chaos. A mechanical analysis has also been proposed to reveal the mechanisms underlying the different dynamical modes including chaos. In a series of comparisons between the GCM analysis and mechanical analysis, chaos for the plasma chaotic system is determined. The mechanism and causes by which the plasma chaotic system produces different dynamical behaviors are interpreted. Furthermore, using the whistler-parameter variation of the Casimir function and Casimir power for the plasma system, the generating mechanisms of the different orbital modes and the different levels of chaos are uncovered.  相似文献   

19.
量子混沌系统中的自旋压缩性质   总被引:1,自引:1,他引:0       下载免费PDF全文
宋立军  严冬  李永大 《发光学报》2007,28(3):336-340
量子信息是21世纪的一门新兴交叉学科,现已经成为世界关注的热门研究领域.近年来,量子计算机的研究正成为大家十分感兴趣的课题.在寻找量子计算的实现方案过程中,量子混沌引起了研究人员的极大关注,因为在量子计算机执行一些量子运算法则的过程中可能产生量子混沌,并可能破坏量子计算机的运算操作条件.近期有关量子纠缠与量子混沌之间的关系已经有所报道,而自旋压缩作为另外一种典型的纯量子效应,是否也与量子混沌之间存在一定关系呢?讨论了量子混沌研究中一个非常典型的QKT模型,研究了量子混沌系统中自旋压缩的性质.通过数值模拟计算,给出了两种不同定义的自旋压缩系数与混沌系数κ之间的变化关系,结果发现在经典相空间中,如果在规则区域占优势的情况下,当初始自旋相干态波包位于椭圆形中心时,随着时间的演化,系统压缩行为表现得非常强;而对于经典相空间中混沌区域占优势的情况下,初始自旋相干态波包同样位于椭圆形中心,则系统的压缩行为表现得非常弱,说明自旋压缩对相应的经典混沌非常敏感.通过比较还发现,采用Wineland等定义的自旋压缩系数比采用Kitagawa和Ueda等定义的自旋压缩系数对经典混沌更敏感一些,从而得出用自旋压缩可以刻画量子混沌的结论.  相似文献   

20.
翟良君  郑雨军  丁世良 《中国物理 B》2012,21(7):70503-070503
In this paper, the dynamics of chaos and the entanglement in triatomic molecular vibrations are investigated. On the classical aspect, we study the chaotic trajectories in the phase space. We employ the linear entropy to examine the dynamical entanglement of the two bonds on the quantum aspect. The correspondence between the classical chaos and the quantum dynamical entanglement is also investigated. As an example, we apply our algebraic model to molecule H2O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号