首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lead-free Na0.5Bi0.5TiO3 (NBT) and (1 ? x)Na0.5Bi0.5TiO3 + xBaTiO3 with x = 0.1 and 0.2 (where x = 0.1 and 0.2 are named as NBT1 and NBT2, respectively), (1 ? y)Na0.5Bi0.5TiO3 + yBa0.925Nd0.05TiO3 with y = 0.1 and 0.2 (where y = 0.1 and 0.2 are named as NBT3 and NBT4, respectively)-based relaxor ferroelectric ceramics were prepared using the sol-gel method. The crystal structure was investigated by X-ray diffraction (XRD) at room temperature (RT). The XRD patterns confirmed the presence of the rhombohedral phase in all the samples. The electrical properties of the present NBT-based samples were investigated by complex impedance and the modulus spectroscopy technique in the temperature range of RT–600 °C. The AC conductivity was found to increase with the substitution of Ba2+ ions to the NBT sample whereas it significantly decreased with the addition of Nd3+ ions. The more anion vacancies in Ba-added samples and the lower anion vacancies in Nd-added samples were found to be responsible for higher and lower conductivities, respectively.  相似文献   

2.
We have observed the effects of phonon mode softening at the ferroelectric transition in Eu0.5Ba0.5TiO3 by 151Eu Mössbauer spectroscopy. Both Eu2+ and Eu3+ spectral components are observed in the relative area ratio of 90% : 10% and both show a decrease in subspectral area at the transition, centred at 175 K, due to phonon mode softening. Surprisingly, the temperature dependence of the f-factor shows a much stronger response in the Eu3+ component than in the Eu2+ one. Preliminary analysis of neutron powder diffraction data rules out the possibility that some of the europium might be located on titanium sites.  相似文献   

3.
Gd2O3:Eu3+ (4 mol%) co-doped with Bi3+ (Bi = 0, 1, 3, 5, 7, 9 and 11 mol%) ions were synthesized by a low-temperature solution combustion method. The powders were calcined at 800°C and were characterized by powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), Fourier transform infrared and UV–Vis spectroscopy. The PXRD profiles confirm that the calcined products were in monoclinic with little cubic phases. The particle sizes were estimated using Scherrer’s method and Williamson–Hall plots and are found to be in the ranges 40–60 nm and 30–80 nm, respectively. The results are in good agreement with TEM results. The photoluminescence spectra of the synthesized phosphors excited with 230 nm show emission peaks at ~590, 612 and 625 nm, which are due to the transitions 5D07F0, 5D07F2 and 5D07F3 of Eu3+, respectively. It is observed that a significant quenching of Eu3+ emission was observed under 230 nm excitation when Bi3+ was co-doped. On the other hand, upon 350 nm excitation, the luminescent intensity of Eu3+ ions was enhanced by incorporation of Bi3+ (5 mol%) ions. The introduction of Bi3+ ions broadened the excitation band of Eu3+ of which a new strong band occurred ranging from 320 to 380 nm. This has been attributed to the 6s2→6s6p transition of Bi3+ ions, implying a very efficient energy transfer from Bi3+ ions to Eu3+ ions. The gamma radiation response of Gd2O3:Eu3+ exhibited a dosimetrically useful glow peak at 380°C. Using thermoluminescence glow peaks, the trap parameters have been evaluated and discussed. The observed emission characteristics and energy transfer indicate that Gd2O3:Eu3+, Bi3+ phosphors have promising applications in solid-state lighting.  相似文献   

4.
ABSTRACT

The existence of Bi-fluctuation dispersing in Na0.5Bi0.5TiO3 (NBT) relaxor ferroelectric is hinted in other recent studies. However, this fluctuation has not been directly observed yet. We introduce the Bi-rich nano-regions with different sizes in a series of NBT ceramics by the slight excess of Bi3+ content. The crystal symmetries of the Bi-rich nano-regions and the NBT matrix are rhombohedral. The lattice parameters of the nano-regions are larger than those of the matrix in NBT ceramics, which were confirmed by the X-ray diffraction Rietveld refinement, TEM techniques and first-principles calculation. Also, the disorder-induced nano-regions appearing as Bi-fluctuation are associated with the complex phase transitions and the high-frequency relaxor behaviour of NBT suggested by the dielectric measurements and Raman spectra.  相似文献   

5.
The luminescence properties of BaZr(BO3)2:5% Eu were investigated under ultraviolet (UV) and vacuum ultraviolet (VUV) excitation and different luminescence behaviors were observed by different excitation energies. After the analyses of the luminescence spectra, the result indicates that Eu3+ occupying non-centrosymmetric sites Ba2+ can be excited preferentially under 254 nm excitation, while Eu3+ occupying centrosymmetric sites Zr4+ can be excited preferentially under 147 nm excitation.  相似文献   

6.
The excitation spectra of M (M=Si4+, Ti4+) and Eu3+ co-doped BaZr(BO3)2, BaZrO3:Eu and La2Zr2O7:Eu in the vacuum ultraviolet (VUV) regions of 110-300 nm are investigated and the host-lattice absorption are characterized. The result indicated that BaZr(BO3)2:Eu3+ phosphor has a strong absorption under the VUV excitation, and in the host-lattice excitation, the strong band at 130-160 nm could be due to the BO3 atomic groups; the band at 160-180 nm is related to the excitation of Ba-O; 180-200 nm corresponds to the charge transfer (CT) transition of Zr-O. The band at 200-235 nm due to the CT band of Eu3+-O2− and a bond valence study explained the observed weak CT band of Eu3+-O2− in the excitation spectra of BaZr(BO3)2:Eu3+. The emission results show that Si4+ can sensitize luminescence in the host of BaZr(BO3)2:Eu but Ti4+ has no improvement effect on luminescence.  相似文献   

7.
Binary (ZnO)0.5(P2O5)0.5 glasses doped with Eu2O3 and nanoparticles of Gd2O3:Eu were prepared by conventional melt-quench method and their luminescence properties were compared. Undoped (ZnO)0.5(P2O5)0.5 glass is characterized by a luminescent defect centre (similar to L-centre present in Na2O-SiO2 glasses) with emission around 324 nm and having an excited state lifetime of 18 ns. Such defect centres can transfer the energy to Eu3+ ions leading to improved Eu3+ luminescence from such glasses. Based on the decay curves corresponding to the 5D0 level of Eu3+ ions in both Gd2O3:Eu nanoparticles incorporated as well as Eu2O3 incorporated glasses, a significant clustering of Eu3+ ions taking place with the latter sample is confirmed. From the lifetime studies of the excited state of L-centre emission from (ZnO)0.5(P2O5)0.5 glass doped with Gd2O3:Eu nanoparticles, it is established that there exists weak energy transfer from L-centres to Eu3+ ions. Poor energy transfer from the defect centres to Eu3+ ions in Gd2O3:Eu nanoparticles doped (ZnO)0.5(P2O5)0.5 glass has been attributed to effective shielding of Eu3+ ions from the luminescence centre by Gd-O-P type of linkages, leading to an increased distance between luminescent centre and Eu3+ ions.  相似文献   

8.
Two series of phosphors, Na0.5Gd0.5WO4: RE3+ and Na0.5Gd0.5(Mo0.75W0.25)O4: RE3+ (RE?=?Eu, Sm, Dy) have been synthesized by hydrothermal process to obtain the high purity, which have been characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM). The results suggest that Na0.5Gd0.5(Mo0.75W0.25)O4: RE3+ phosphors are more easily to crystallize than Na0.5Gd0.5WO4: RE3+ ones. Both of them present the characteristic luminescence of Eu3+, Sm3+ and Dy3+. Especially the photoluminescent properties of Na0.5Gd0.5WO4: x%Eu3+ (Sm3+) can be obtained to show white luminescence as the suitable doping concentration of Eu3+ or Sm3+.  相似文献   

9.
YVO4:Eu3+,Bi3+ phosphors have been prepared by the high-temperature solid-state (HT) method and the Pechini-type sol-gel (SG) method. Spherical SiO2 particles have been further coated with YVO4:Eu3+,Bi3+ phosphor layers by the Pechini-type SG process, and it leads to the formation of core-shell structured SiO2/YVO4:Eu3+,Bi3+ phosphors. Therefore, the phase formations, structures, morphologies, and photoluminescence properties of the three types of as-prepared YVO4:Eu3+,Bi3+ phosphors were studied in detail. The average diameters for the phosphor particles are 2-4 μm for HT method, 0.1-0.4 μm for SG method, and 0.5 μm for core-shell structured SiO2/YVO4:Eu3+,Bi3+ particles, respectively. Photoluminescence spectra show that effective energy transfer takes place between Bi3+ and Eu3+ ions in each type of as-prepared YVO4:Eu3+,Bi3+ phosphors. Introduction of Bi3+ into YVO4:Eu3+ leads to the shift of excitation band to the long-wavelength region, thus the emission intensities of 5D0-7F2 electric dipole transition of Eu3+ at 615 nm upon 365 nm excitation increases sharply, which makes this phosphor a suitable red-emitting materials that can be pumped with near-UV light emitting diodes (LEDs).  相似文献   

10.
Green-emitting phosphor Na2Ba2Si2O7:Eu2+ has been synthesized by a conventional high-temperature solid-state reaction. The phase structure and luminescence properties are characterized by the X-ray powder diffraction, diffuse reflectance spectra, photoluminescence excitation and emission spectra, temperature-dependent emission spectra, respectively. It can be efficiently excited in the wavelength range of 325–400 nm and consists of a strong broad green band centered at about 501 nm, which is ascribed to 4f66s05d1 → 4f76s25d0 transition of Eu2+. The critical quenching concentration of Eu2+ in the Na2Ba2Si2O7 host is about 0.8 mol % and corresponding quenching behavior is ascribed to be electric dipole–dipole interaction. Furthermore, the phosphor has good thermal stability property, and the activation energy for thermal quenching is calculated as 0.34 eV.  相似文献   

11.
Undoped and PbNb2O6:Eu3+ (1.0 ≤ x ≤ 6.0 mol%) phosphors were synthesized at 1100 °C for 3.5 h by the conventional solid state reaction method. Synthesized PbNb2O6:Eu3+ phosphors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Energy dispersive spectroscopy (EDS) and Photoluminescence (PL) analyses. The PL spectra showed series of excitation peaks between 350 and 430 nm due to the 4f–4f transitions of Eu3+. For 395.0 nm excitation, emission spectra of Eu3+ doped samples were observed at 591 nm (orange) and 614 nm (red) due to the 5D0 → 7F1 transitions and 5D0 → 7F2 transitions, respectively. PL analysis results also showed that the emission intensity increased by increasing Eu3+ ion content. No concentration quenching effect was observed. The CIE chromaticity color coordinates (x,y) of the PbNb2O6:Eu3+ phosphors were found to be in the red region of the chromaticity diagram.  相似文献   

12.
Eu3+-doped Na2Ti6O13 (Na2Ti6O13:Eu) nanorods with diameters of 30 nm and lengths 400 nm were synthesized by hydrothermal and heat treatment methods. Raman spectra at ambient conditions indicated a pure monoclinic phase (space group C2/m) of the nanorods. The relations between structural and optical properties of Na2Ti6O13:Eu nanorods under high pressures were obtained by photoluminescence and Raman spectra. Two structural transition points at 1.39 and 15.48 GPa were observed when the samples were pressurized. The first transition point was attributed to the crystalline structural distortion. The later transition point was the result of pressure-induced amorphization, and the high-density amorphous (HDA) phase formed after 15.48 GPa was structurally related to the monoclinic baddeleyite structured TiO2 (P21/c). However, the site symmetry of the local environment around the Eu3+ ions in Na2Ti6O13 increased with the rising pressure. These above results indicate the occurrence of short-range order for the local asymmetry around the Eu3+ ions and long-range disorder for the crystalline structure of Na2Ti6O13:Eu nanorods by applying pressure. After releasing the pressure from 22.74 GPa, the HDA phase is transformed to low-density amorphous form, which is attributed to be structurally related to the α-PbO2-type TiO2.  相似文献   

13.
Anti‐counterfeiting technologies are desired to protect products far away from the violation of dummy, fake and shoddy goods. The phosphor of (Y,Gd)VO4:Bi3+,Eu3+ was synthesized for the application of this purpose. Its photoluminescence was investigated by exciting with different wavelengths at variant temperatures. Wide emission color ranged from green through yellow to orange was tuned up by tailor‐ing Bi3+ and Eu3+ concentrations. The temperature dependent luminescence and wavelength selective excitation of (Y,Gd)VO4:Bi3+,Eu3+ were observed, which provide different encryptions in anti‐counterfeiting. To verify the feasibility in application, two anti‐counterfeiting patterns were fabricated practically and excellent performance was obtained. Moreover, the physical mechanisms for the different phenomena of luminescence were elucidated from excitation spectra combining with the configuration coordinate model. (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Eu2+- and Eu3+-Zn2GeO4 were prepared by the high temperature solid-state reaction method. The phase purity and crystallinity of Zn2GeO4:Eu samples were characterized by X-ray diffraction (XRD). The excitation spectra, the emission spectra and the luminescence decay curves of the Eu2+- and Eu3+-Zn2GeO4 were investigated. Zn2GeO4:Eu2+ gives a bluish-green luminescence with one emission band located at 467 nm, and Zn2GeO4:Eu3+ presents an reddish-orange color due to the transition (5D07FJ, J = 1 and 2) of the Eu3+ ions. The luminescence decay curves of Eu2+ and Eu3+ provide complementary evidence to the mixed valence of europium (Eu2+, Eu3+) in Zn2GeO4 host. These indicate that the mixed valence of europium (Eu2+, Eu3+) coexists in Zn2GeO4 host prepared in an oxidizing atmosphere. The abnormal reduction phenomenon of Eu3+→Eu2+ in Zn2GeO4 host prepared in an oxidizing atmosphere was reported and discussed on the basis of the charge compensation model.  相似文献   

15.
We have investigated perovskites with composition Sr2Na0.5Ln3+0.5WO6 and Sr2Na0.5Ln3+0.5 UO6 (Ln = La, Gd, Eu). Their luminescence gives information on crystallographic details of the crystal structure and on a number of different energy transfer phenomena in these compounds. For Ln = La the Na+ and La3+ ions are disordered; for Ln = Gd(Eu) they are ordered. Single-step energy transfer is observed for the couples U6+ -Eu3+ and W6+ - Eu3+; energy migration occurs within the uranium and the europium sublattices.  相似文献   

16.
A series of new red phosphors, MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K), were synthesized using the solidstate reaction method, and their photoluminescence spectra were measured. The MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K) phosphors were efficiently excited by an ultraviolet (UV; 395 nm) source, and showed intense orange-red emission at 595 nm. Further investigation of the concentration-dependent emission spectra indicated that the MZr2(PO4)3:Eu3+; Bi3+ (M=Na; K) phosphors exhibit the strongest luminescence intensity when y = 0.01 in NaZr2(0:95−y)(PO4)3:Eu0.103+, Bi2y 3+ and y = 0.09 in NaZr2(0.95−y)(PO4)3:Eu0.103+, Bi2y 3+, whereas the relative PL intensity decreases with increasing Bi3+ concentration due to concentration quenching. The addition of Bi3+ widens the excitation band of NaZr2(0.95−y)(PO4)3:Eu0.103+, Bi2y 3+ around 320 nm, which provides the useful idea of broadening the excitation band around 300–350 nm to fit the ultraviolet chip.  相似文献   

17.
MgO:Eu3+ nanocrystals with average diameter around 15 nm were prepared via a facile combustion method under a weak reductive atmosphere at temperature as low as 300°C. The photoluminescence spectra showed that the MgO:Eu3+ nanocrystals emit white light, the hypersensitive transition (5 D 07 F j of Eu3+) emission was prominent in the emission spectra resulting from the noinversion symmetry local site at which Eu3+ ions were located. Two kinds of luminescence sites of Eu3+ are identified by means of the fluorescence decay and site-selective spectroscopy. The excitation and absorption spectra indicated that the absorption of surface state decreased with the increase of Eu3+ concentration, meaning that the surface defect decreased through Eu3+ doping for some of them located at the disordered sites near the surface or absorbed at the surface of MgO host. Meanwhile, absorptivity and CIE chromaticity coordinates of all samples were measured; the results were in accordance with the excitation and absorption spectra and photoluminescence spectra, respectively.  相似文献   

18.
Uninuclear europium (Eu), as well as binuclear Eu and terbium (Tb), complexes were synthesized using acrylic acid (AA) as the first ligand and 1,10-phenanthroline (Phen) as the second ligand. The relative weight ratio of the europium (III) (Eu3+) to terbium (III) (Tb3+) ions of the binuclear complex was 1:1 as determined via energy dispersive X-ray analysis. The structures of the Eu(AA)3Phen and Eu0.5Tb0.5(AA)3Phen complexes were characterized by Fourier transform infrared spectroscopy. A series of tri-cellulose acetate (TCA)/ the Eu(AA)3Phen and TCA/Eu0.5Tb0.5(AA)3Phen composites were prepared by solution blending, and their luminescent properties were investigated by fluorescence spectrophotometry. The excitation spectra of all composites indicated that the TCA matrix probably affected the energy absorption and transfer of organic ligands. In TCA/Eu0.5Tb0.5(AA)3Phen composites the introduced Tb3+ ions had some influence on energy absorption and transfer of organic ligands; the energy transfer process of the complex is suggested to be as follows: Phen→AA→Tb3+ion→Eu3+ion. The emission spectra indicated that the luminescent intensity of the TCA/Eu0.5Tb0.5(AA)3Phen composites was noticeably stronger than that of the TCA/Eu(AA)3Phen composites, suggesting that the comparatively stable and high-efficiency energy transfer process was only slightly influenced by the TCA matrix. In summary, the TCA/Eu0.5Tb0.5(AA)3Phen (90/10) composite possesses fine luminescent properties for potential usage as red fluorescent materials.  相似文献   

19.
Borate Ba3InB9O18 (BIBO) has been adopted as a host material for phosphors for the first time. Lanthanide ions (Eu3+/Tb3+)-doped BIBO phosphors have been synthesized by solid-state reaction and luminescent properties investigated under ultravoilet (UV) excitation. For red phosphor BIBO:Eu, dominant emission peaking at 590 nm was attributed to 5D07F1 transition of Eu3+, which confirmed that the local site of Eu3+ occupied by In3+ ion in BIBO crystal lattice is at inversion symmetry center. Optimum Eu3+ concentration of BIBO:Eu under UV excitation with 227 nm wavelength is around 40%. The green phosphor BIBO:Tb showed bright green emission at 550 with 232 nm light excited and optimal of Tb3+ concentration measured in BIBO is about 8%. The corresponding luminescence mechanisms of Ln-doped BIBO (Ln=Eu3+/Tb3+) were analyzed. The luminescent intensity of Tb3+ can be significantly improved by co-doping of Bi3+ in the BIBO:Tb lattice. The likely reason was proposed in terms of the different interactions of the host lattice with these ions, and of these ions with each other.  相似文献   

20.
Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors were prepared and their luminescent properties under vacuum ultraviolet (VUV)/UV excitation were investigated. Strong red emission for (Y,Gd)BO3:Bi3+,Eu3+ and strong green emission for (Y,Gd)BO3:Bi3+,Tb3+ are observed under VUV excitation from 147 to 200 nm with a much broader excitation region than that of single Eu3+-doped or Tb3+-doped (Y,Gd)BO3 phosphor. Strong emissions are also observed under UV excitation around 265 nm where as nearly no luminescence is observed for single Eu3+-doped or Tb3+-doped (Y,Gd)BO3. The luminescence enhancement of Bi3+- and RE3+-co-doped (Y,Gd)BO3 phosphors is due to energy transfer from Bi3+ ion to Eu3+ or Tb3+ ion not only in the VUV region but also in the UV region. Besides, host sensitization competition between Bi3+ and Eu3+ or Tb3+ is also observed. The investigated phosphors may be preferable for devices with a VUV light 147-200 nm as an excitation source such as PDP or mercury-free fluorescent lamp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号