首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-step anodic oxidation of aluminum is generally employed to produce the ordered porous anodized alumina (PAA). Dissolving away (striping) the oxide film after the first anodizing step plays a key role in the final arrangement of nano-pores. In this work, different striping durations between 1 and 6 h were applied to the sample that was initially anodized at a constant voltage of 40 V at 17 °C for 15 h. The striping duration of 3 h was realized as the optimum time for achieving the best ordering degree for the pores. Scanning electron microscopy (SEM) was used during and at the end of the process to examine the cross section and finishing surface of the specimens. Linear-angular fast Fourier transform (LA-FFT), an in-house technique based on MATLAB software, was employed to assess the ordering degree of the anodized samples.  相似文献   

2.
Anodic oxidation of Al film on silicon substrate in oxalic acid is investigated through the jt curves and its photoluminescence (PL). Their growth is analyzed with three typical stages according to jt curve, which is agreed with the growth of nanoscale SiO2 islands at the interface between Al film and Si substrate. The violet and blue peaks of PL were due to F+ and F centers, respectively. The evolvement from F+ to F centers during the late stage of anodization was revealed by the PL behavior at different stage.  相似文献   

3.
Photoluminescence and optical properties of as-anodized and heat-treated at 500 °C porous alumina films formed in a 0.3 M oxalic acid at 40 V have been studied. The FTIR indicates that the oxalate ions are embedded in the anodic alumina as chelating bidentate structures and further heating up to 500 °C does not cause any change in ion coordination. The results of time-resolved spectroscopy show the presence of two luminescence centers both in the as-anodized and heat-treated anodic alumina films with lifetimes of about 0.25 and 4.0 ns. The F+-centers in anodic alumina are responsible for the luminescence peak at about 420 nm, with a lifetime of about 4.0 ns. The luminescence peak at about 480 nm, with lifetime of about 0.25 ns, can be attributed to the luminescence of carboxylate ions existing in bulk of anodic alumina.  相似文献   

4.
We have investigated the photoluminescence (PL) property of porous anodic alumina membranes (PAAMs) formed on bulk Al foils in 0.3 M sulfuric acid. Different from that from the PAAMs formed in oxalic acid, the obtained PL spectra show two emission bands which have different origins. One centered at ∼465 nm (α-band) weakens its intensity in the PAAM annealed in O2 and is thus attributed to optical transition in oxygen vacancies. The other in the blue (β-band) redshifts with increasing excitation wavelength. On the basis of spectral examinations and analyses, we ascribe the β-band to radiative recombination of carriers in the isolated hydroxyl groups at the surface of the pore wall, whereas the photogeneration of carriers takes place in oxygen vacancies in the pore wall. This work improves the understanding of the light-emitting property of the PAAMs formed in sulfuric and oxalic acid.  相似文献   

5.
Photoluminescence (PL) of the anodic alumina has been studied and related with quality of hexagonal ordering of the pores. The photoluminescence excitation (PLE) spectra have been successfully de-convoluted into primarily two sub-bands with peak positions at about 355 and 395 nm and maximum emission at about 450 and 500 nm, respectively; the former being assigned to F+ centers and the latter to the F-centers. A red shift in the PLE takes place, at a given anodizing voltage, when the quality of the hexagonal pore ordering deteriorates with an increase in number density of defects, i.e., pentagons and hexagons with missing pores. The metallic hills at these defects change the curvatures of the metal-oxide and the oxide-electrolyte interfaces that could affect the field distribution and hence the stress-state and other characteristics of the oxide at the defects. This allows a comparatively larger concentration of F centers (395 nm band), causing a red shift in the PLE with increase in defect density.  相似文献   

6.
A porous anodic film on aluminum was prepared in a mixed electrolyte of phosphoric acid and organic acid and cerium salt, and ultrasonic impregnation technology was applied on it to form self-lubricating surface composite. The structure and chemical composition of the film and its lubricity after self-lubricating treatment were investigated in detail. EPMA indicates the cross-section of anodized film has two distinct oxide layers. Al, O and P are found in the film with different distribution in the two layers. XPS analysis on the electron binding energy of the component elements show the chemical composition of film surface are Al2O3, Ce(OH) and some phosphates. The structure of anodized film is amorphous with XRD analysis.The tribological tests shows the frictional coefficient of the self-lubricating surface composite coating is 0.25, much lower than anodized aluminum and aluminum substrate, which is about 0.55 and 0.85, respectively, and it is also durable for a long period of time in comparison with the lubricating coating fabricated by hot-dipping method. SEM images show some PTFE particles are added into the nanoholes of anodic oxide film.  相似文献   

7.
Porous aluminum oxide is prepared in a 0.4 M aqueous solution of tartaric acid by two-sided anodizing. Fourier Transform IR spectroscopy (FTIR) data reveal the presence, in the alumina, of unoxidized tartarate ions, as well as products of their partial (radical organic products and CO) and complete (CO2) oxidation. Carboxylate ions and elemental carbon contained in the anodic oxide impart a gray color to the films.  相似文献   

8.
Using a tungsten-containing layer, incorporated into sputtering-deposited aluminium, as a tracer, the growth of porous anodic films in malonic and oxalic acid electrolytes has been investigated using transmission electron microscopy, Rutherford backscattering spectroscopy and nuclear reaction analysis. Comparisons were also made with films formed in phosphoric acid electrolyte, which have been studied previously. The findings reveal a distortion of the tracer layer within the barrier region of the porous films, evident as a lagging of the tracer beneath the pores relative to that in the adjacent cell wall region. Further, the films are significantly thicker than the layer of metal consumed during anodizing and display smooth-sided pores. The anodizing behaviours are consistent with a major role for field-assisted flow of film material within the barrier layer in the development of the pores.  相似文献   

9.
Photoluminescent and optical properties of porous oxide films formed by two-step aluminum anodization at a constant potential of 30 V in sulfamic acid have been investigated after their annealing, ranging from room temperature up to 600 °C. X-ray diffraction reveals the amorphous nature of porous oxide films. Infrared and energy dispersive spectroscopy indicates the presence of sulfuric species incorporated in oxide films during the anodization. Photoluminescence (PL) measurements show PL bands in the range from 320 to 600 nm. There are two peaks in emission and excitation spectra. One emission peak is at constant wavelength centered at 460 nm and the other shifts from 390 to 475 nm, depending on excitation wavelength. For excitation spectra, one spectral peak is at constant wavelength at 270 nm and the other also shifts to longer wavelengths while increasing emission wavelength. Upon annealing of the as-prepared oxide films PL increases reaching maximum value at about 300 °C and then decreases. The results indicate the existence of two PL centers, one placed at surface of the pore wall, while the other positioned inside the oxide films.  相似文献   

10.
The present work focuses on the use of IR spectroscopy and photoluminescence spectral measurements for studying the treatment temperature effect on the compositional and luminescent properties of oxalic acid alumina films. In line with the recent researches we have also found that heat treatment of porous alumina films formed in oxalic acid leads to considerable changes in their photoluminescence properties: upon annealing the intensity of photoluminescence (PL) increases reaching a maximum at the temperature of around 500 °C and then decreases. IR spectra of as-grown and heat-treated films have proved that PL emission in the anodic alumina films is related with the state of ‘structural’ oxalate species incorporated in the oxide lattice. These results allowed us to conclude that PL behavior of oxalic acid alumina films can be explained through the concept of variations in the bonding molecular orbitals of incorporated oxalate species including σ- and π-bonds.  相似文献   

11.
The influence of experimental parameters on the morphology of the porous structure and on the formation kinetics has been investigated for anodic alumina membranes (AAM) grown in aqueous H3PO4 at 160 V. It was found that pore aspect ratio and membrane porosity on the solution-side surface are influenced by tensiostatic charge, bath temperature and the presence of Al3+ ions in solution. Morphological and kinetic data, recorded in different conditions, give useful information on the growth mechanism of pore channels in phosphoric acid solution.Nickel nano-structures have been fabricated using AAM as template. Electroless deposition, performed by adding the reducing agent to a suitable bath in several steps, resulted in the formation of short metal nanotubes (about 5 μm long) in the upper part of the channels. Long Ni nanowires (up to 25 μm) with aspect ratio higher than 100 were obtained by pulsed unipolar electrodeposition from a Watt bath. In this case, both the influence of some experimental parameters on the nanowires growth and the fast current transients during the electrodeposition steps were analyzed.  相似文献   

12.
Anodic layer growth on 2024 aluminium alloy at 70 °C, under 40 V, during 60 min, in 50 g L−1 di-sodium tetraborate solution containing di-sodium molybdate from 0.1 to 0.5 M (pH 10) is examined. Anodising behaviours strongly depend on additive concentration. Development of anodic films is favoured with weak molybdate additions (<0.3-0.4 M). The film thicknesses increase and the porosity of anodic layers decreases. Molybdenum (+VI), detected by X-ray photoelectron spectroscopy (XPS) analysis, is present in the anodic films and the Mo incorporation, studied by energy dispersive spectroscopy (EDS) analysis, increases with molybdate concentration. However, for high molybdate concentrations (>0.4 M), anodising behaviour becomes complex with the formation of a blue molybdenum oxide at the cathode. The growth of aluminium oxide is hindered. As the anodic layers are thinner, the Mo(+VI) incorporation significantly decreases. These two configurations implicate different corrosion performances in 5% sodium chloride solution at 35 °C. As the alkaline anodic layer formed with 0.3 M molybdate species is the thickest and the Mo incorporation is the more pronounced, its corrosion resistance is the highest. The effect of morphology and composition of anodic films on pitting corrosion is also discussed.  相似文献   

13.
We report on the composition and morphology of as-grown anodic oxide films onto the iron surface in an ethylene glycol solution containing some NH4F and H2O by anodizing under direct current bias. Decrease in the content of NH4F and the temperature of electrolyte allow us to form either nanochannel or nanotubular films over a larger potential window, ca. from 30 to 100 V. By this way, the films in thickness of up to10 μm have been formed. Mössbauer spectra recorded at room to cryogenic temperatures under conversion electron and transmission modes revealed the formation of lepidocrocite (γ-FeOOH) film containing some Fe(OH)2 and/or FeF2·4H2O. An increase in anodizing voltage results in fabrication of more porous and less Fe(II) compounds containing films.  相似文献   

14.
The contact melting of copper and aluminum is performed in the nonsteady-state diffusion mode at a temperature of 570°C. Fragments of a spherical phase, presumably CuAl2, 10–15 μm in size and a lamellar phase 70–200 μm in length and 10 μm in width are found on the cleaved facets of the contact layer formed.  相似文献   

15.
In this study, a new anodized aluminum oxide (AAO) nanostructure membrane was synthesized by anodization process under a constant voltage, in oxalic acid solution that was improved with trace amounts of sulfuric acid at room temperature. The effect of various parameters on the morphology of the synthesized nanostructures such as voltage, electrolyte composition, anodization time and type of stripping solution were investigated. According to the results, corrosion of the walls, size regularity, diameter and number of the pores increased in the presence of sulfuric acid (0.018 mol.L−1). Nitrogen adsorption-desorption analysis confirmed significant porosity, array and uniformity of the pore size in the synthesized nanoporous membrane. A new modification method was used based on ultrasonic-hydrothermal method to modify the synthesized AAO with Fe3O4/SiO2 nanoparticles for metals and metalloids removal from aqueous solution. In this method, Fe3O4/SiO2 nanoparticles were placed very regularly and uniformly on the surface and inside the pores. This modification was confirmed by characterization techniques. The modified AAO@Fe3O4/SiO2 membrane showed excellent results for removing arsenic from aqueous media.  相似文献   

16.
In this paper we develop a new static model for boron isotope separation by the laser assisted retardation of condensation method (SILARC) on the basis of model proposed by Jeff Eerkens. Our model is thought to be adequate to so-called two-step iterative scheme for isotope separation. This rather simple model helps to understand combined action on boron separation by SILARC method of all important parameters and relations between them. These parameters include carrier gas, molar fraction of BCl3 molecules in carrier gas, laser pulse intensity, gas pulse duration, gas pressure and temperature in reservoir and irradiation cells, optimal irradiation cell and skimmer chamber volumes, and optimal nozzle throughput. A method for finding optimal values of these parameters based on some objective function global minimum search was suggested. It turns out that minimum of this objective function is directly related to the minimum of total energy consumed, and total setup volume. Relations between nozzle throat area, IC volume, laser intensity, number of nozzles, number of vacuum pumps, and required isotope production rate were derived. Two types of industrial scale irradiation cells are compared. The first one has one large throughput slit nozzle, while the second one has numerous small nozzles arranged in parallel arrays for better overlap with laser beam. It is shown that the last one outperforms the former one significantly. It is argued that NO2 is the best carrier gas for boron isotope separation from the point of view of energy efficiency and Ar from the point of view of setup compactness.  相似文献   

17.
Ultrathin silicon dioxide (SiO2) layers formed on Si substrate with nitric acid have been investigated using both acoustic deep-level transient spectroscopy (A-DLTS) and electrical methods to characterize the interface states. The set of SiO2/Si structures formed in different conditions (reaction time, concentrations of nitric acid (HNO3), and SiO2 thickness [3–9 nm]) was prepared. The leakage current density was decreased by post-oxidation annealing (POA) treatment at 250°C in pure nitrogen for 1 h and/or post-metallization annealing (PMA) treatment at 250°C in a hydrogen atmosphere for 1 h. All structures of the set, except electrical investigation, current-voltage (I - V), and capacitance — voltage (C - V) measurements, were investigated using A-DLTS to find both the interface states distribution and the role of POA and/or PMA treatment on the interface-state occurrence and distribution. The evident decreases of interface states and shift of their activation energies in the structures with PMA treatment in comparison with POA treatment were observed in most of the investigated structures. The results are analyzed and discussed.   相似文献   

18.
Samples of standard SIMOX material, dose 2.4×1018/cm2 at 200 keV have been examined in the as-implanted and annealed condition. The samples were prepared by wet-chemical etching with the silicon overlayer being removed first. Samples were then etched to remove the buried oxide, revealing and successively exposing the interface. These samples were then examined by ellipsometry and SIMS with an emphasis on the optical properties and compositional nature of the interfaces. Ellipsometry results indicate that a final layer of the buried oxide with refractive index 2.5 to 3 and thickness 150 to 250 Å is very resistant to the oxide etch. This may be correlated with the compositional profile of the interfacial region obtained by SIMS. The interface between the buried oxide and bulk silicon includes two layers, the first of silicon with SiO2 precipitates and the second of entirely SiO2.  相似文献   

19.
The results of investigating the microstructure and composition of layers formed by platinum deposition onto carbon carriers used as electrocatalysts—MG-1 graphite, SU-2000 glassy carbon, and AVCarb® P50 carbon fiber paper—are presented. The layers have been created via the ion-beam-assisted deposition of platinum, in which metal deposition and mixing between the deposited layer and substrate-surface atoms accelerated by ions of the same metal (U = 10 kV) occur, respectively, from a neutral vapor fraction and the vacuum-arc discharge plasma of a pulsed ion source. The layers are examined via scanning electron microscopy, electron probe microanalysis, electron backscatter diffraction, Rutherford backscattering spectrometry, and X-ray photoelectron spectrometry. The formed layers (their thicknesses are ~100 nm and the platinum content is ~1016 atom cm?2) are characterized by an amorphous atomic structure that repeats the surface microstructure of the carbon carrier.  相似文献   

20.
During experiments simulating the destruction of organic waste or the conversion of biomass with water at supercritical water conditions (SCW, T > 374 °C, p > 22.1 MPa), severe corrosion phenomena were observed. Depending on the experimental conditions applied, scale formation and precipitation of corrosion products occurred. The harsh conditions and the chemical properties of the feed solutions lead to consecutive chemical reactions with the materials involved. To study such hydrothermal reactions on simplified model systems, tubular reactors made of Ni‐based alloys were exposed to feed solutions composed of water, methanol and alkaline salts. After each experiment, the reaction tubes were cut and examined by optical microscopy. Hydrothermally formed corrosion layers were studied by field emission electron microscopy and combined energy dispersive X‐ray spectroscopy. Element line scans and mappings were performed which depicted selective dissolution of alloying elements (dealloying of Ni, Fe, Mo). The formation of the corrosion layers was accompanied by a subsequent reduction of the tube wall diameter. Atomic force microscopy gained additional morphological information; a Monte Carlo programme was applied to simulate X‐ray line scans. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号