首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We denote by Conc A the ${(\vee, 0)}$ -semilattice of all finitely generated congruences of an algebra A. A lifting of a ${(\vee, 0)}$ -semilattice S is an algebra A such that ${S \cong {\rm Con}_{\rm c} A}$ . The assignment Conc can be extended to a functor. The notion of lifting is generalized to diagrams of ${(\vee, 0)}$ -semilattices. A gamp is a partial algebra endowed with a partial subalgebra together with a semilattice-valued distance; gamps form a category that lends itself to a universal algebraic-type study. The raison d’être of gamps is that any algebra can be approximated by its finite subgamps, even in case it is not locally finite. Let ${\mathcal{V}}$ and ${\mathcal{W}}$ be varieties of algebras (on finite, possibly distinct, similarity types). Let P be a finite lattice. We assume the existence of a combinatorial object, called an ${\aleph_0}$ -lifter of P, of infinite cardinality ${\lambda}$ . Let ${\vec{A}}$ be a P-indexed diagram of finite algebras in ${\mathcal{V}}$ . If ${{\rm Con}_{\rm c} \circ \vec{A}}$ has no partial lifting in the category of gamps of ${\mathcal{W}}$ , then there is an algebra ${A \in \mathcal{V}}$ of cardinality ${\lambda}$ such that Conc A is not isomorphic to Conc B for any ${B \in \mathcal{W}}$ . This makes it possible to generalize several known results. In particular, we prove the following theorem, without assuming that ${\mathcal{W}}$ is locally finite. Let ${\mathcal{V}}$ be locally finite and let ${\mathcal{W}}$ be congruence-proper (i.e., congruence lattices of infinite members of ${\mathcal{W}}$ are infinite). The following equivalence holds. Every countable ${(\vee, 0)}$ -semilattice with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ if and only if every ${\omega}$ -indexed diagram of finite ${(\vee, 0)}$ -semilattices with a lifting in ${\mathcal{V}}$ has a lifting in ${\mathcal{W}}$ . Gamps are also applied to the study of congruence-preserving extensions. Let ${\mathcal{V}}$ be a non-semidistributive variety of lattices and let n ≥ 2 be an integer. There is a bounded lattice ${A \in \mathcal{V}}$ of cardinality ${\aleph_1}$ with no congruence n-permutable, congruence-preserving extension. The lattice A is constructed as a condensate of a square-indexed diagram of lattices.  相似文献   

2.
3.
For an algebra ${\mathcal{A}}$ of complex-valued, continuous functions on a compact Hausdorff space (X, τ), it is standard practice to assume that ${\mathcal{A}}$ separates points in the sense that for each distinct pair ${x, y \in X}$ , there exists an ${f \in \mathcal{A}}$ such that ${f(x) \neq f(y)}$ . If ${\mathcal{A}}$ does not separate points, it is known that there exists an algebra ${\widehat{\mathcal{A}}}$ on a compact Hausdorff space ${(\widehat{X}, \widehat{\tau})}$ that does separate points such that the map ${\mathcal{A} \mapsto \widehat{\mathcal{A}}}$ is a uniform norm isometric algebra isomorphism. So it is, to a degree, without loss of generality that we assume ${\mathcal{A}}$ separates points. The construction of ${{\widehat{\mathcal{A}}}}$ and ${(\widehat{X}, \widehat{\tau})}$ does not require that ${\mathcal{A}}$ has any algebraic structure nor that ${(X, \tau)}$ has any properties, other than being a topological space. In this work we develop a framework for determining the degree to which separation of points may be assumed without loss of generality for any family ${\mathcal{A}}$ of bounded, complex-valued, continuous functions on any topological space ${(X, \tau)}$ . We also demonstrate that further structures may be preserved by the mapping ${\mathcal{A} \mapsto \widehat{\mathcal{A}}}$ , such as boundaries of weak peak points, the Lipschitz constant when the functions are Lipschitz on a compact metric space, and the involutive structure of real function algebras on compact Hausdorff spaces.  相似文献   

4.
If ${\mathcal{A}}$ is a family of continuous functions on a locally compact Hausdorff space X, a boundary for ${\mathcal{A}}$ is a subset ${B \subset X}$ such that every ${f \in \mathcal{A}}$ attains its maximum modulus on B. In this work we generalize the concept of strong boundary points for families of functions and show that the collection of these generalized strong boundary points is always a boundary for ${\mathcal{A}}$ . We give conditions under which all boundaries for ${\mathcal{A}}$ consist of generalized strong boundary points and under which these points coincide with classical strong boundary points. When ${\mathcal{A}}$ has sufficient algebraic structure it is proven that this construction provides a unique boundary for ${\mathcal{A}}$ consisting of boundary points, and we conclude by demonstrating how this approach provides an alternate technique for proving the existence of the Choquet and Shilov boundaries in certain function algebras.  相似文献   

5.
Let ${\mathcal{P}}$ be a nonparametric probability model consisting of smooth probability densities and let ${\hat{p}_{n}}$ be the corresponding maximum likelihood estimator based on n independent observations each distributed according to the law ${\mathbb{P}}$ . With $\hat{\mathbb{P}}_{n}$ denoting the measure induced by the density ${\hat{p}_{n}}$ , define the stochastic process ${\hat{\nu}}_{n}: f\longmapsto \sqrt{n} \int fd({\hat{\mathbb{P}}}_{n} -\mathbb{P})$ where f ranges over some function class ${\mathcal{F}}$ . We give a general condition for Donsker classes ${\mathcal{F}}$ implying that the stochastic process $\hat{\nu}_{n}$ is asymptotically equivalent to the empirical process in the space ${\ell ^{\infty }(\mathcal{F})}$ of bounded functions on ${ \mathcal{F}}$ . This implies in particular that $\hat{\nu}_{n}$ converges in law in ${\ell ^{\infty }(\mathcal{F})}$ to a mean zero Gaussian process. We verify the general condition for a large family of Donsker classes ${\mathcal{ F}}$ . We give a number of applications: convergence of the probability measure ${\hat{\mathbb{P}}_{n}}$ to ${\mathbb{P}}$ at rate ${\sqrt{n}}$ in certain metrics metrizing the topology of weak(-star) convergence; a unified treatment of convergence rates of the MLE in a continuous scale of Sobolev-norms; ${\sqrt{n}}$ -efficient estimation of nonlinear functionals defined on ${\mathcal{P}}$ ; limit theorems at rate ${\sqrt{n}}$ for the maximum likelihood estimator of the convolution product ${\mathbb{P\ast P}}$ .  相似文献   

6.
We use certain strong Q-reducibilities, and their corresponding strong positive reducibilities, to characterize the hyperimmune sets and the hyperhyperimmune sets: if A is any infinite set then A is hyperimmune (respectively, hyperhyperimmune) if and only if for every infinite subset B of A, one has ${\overline{K}\not\le_{\rm ss} B}$ (respectively, ${\overline{K}\not\le_{\overline{\rm s}} B}$ ): here ${\le_{\overline{\rm s}}}$ is the finite-branch version of s-reducibility, ??ss is the computably bounded version of ${\le_{\overline{\rm s}}}$ , and ${\overline{K}}$ is the complement of the halting set. Restriction to ${\Sigma^0_2}$ sets provides a similar characterization of the ${\Sigma^0_2}$ hyperhyperimmune sets in terms of s-reducibility. We also show that no ${A \geq_{\overline{\rm s}}\overline{K}}$ is hyperhyperimmune. As a consequence, ${\deg_{\rm s}(\overline{K})}$ is hyperhyperimmune-free, showing that the hyperhyperimmune s-degrees are not upwards closed.  相似文献   

7.
We initiate a new line of investigation on branching problems for generalized Verma modules with respect to reductive symmetric pairs $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ . In general, Verma modules may not contain any simple module when restricted to a reductive subalgebra. In this article we give a necessary and sufficient condition on the triple $ \left( {\mathfrak{g},\mathfrak{g}',\mathfrak{p}} \right) $ such that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ always contains simple $ \mathfrak{g}' $ -modules for any $ \mathfrak{g} $ -module X lying in the parabolic BGG category $ {\mathcal{O}^\mathfrak{p}} $ attached to a parabolic subalgebra $ \mathfrak{p} $ of $ \mathfrak{g} $ . Formulas are derived for the Gelfand?CKirillov dimension of any simple module occurring in a simple generalized Verma module. We then prove that the restriction $ {\left. X \right|_{\mathfrak{g}'}} $ is generically multiplicity-free for any $ \mathfrak{p} $ and any $ X \in {\mathcal{O}^\mathfrak{p}} $ if and only if $ \left( {\mathfrak{g},\mathfrak{g}'} \right) $ is isomorphic to (A n , A n-1), (B n , D n ), or (D n+1, B n ). Explicit branching laws are also presented.  相似文献   

8.
In this paper, we describe a relationship between the simplest examples of arithmetic theta series. The first of these are the weight 1 theta series ${\widehat{\phi}_{\mathcal C}(\tau)}$ defined using arithmetic 0-cycles on the moduli space ${\mathcal C}$ of elliptic curves with CM by the ring of integers ${O_{\kappa}}$ of an imaginary quadratic field. The second such series ${\widehat{\phi}_{\mathcal M}(\tau)}$ has weight 3/2 and takes values in the arithmetic Chow group ${\widehat{{\rm CH}}^1(\mathcal{M})}$ of the arithmetic surface associated to an indefinite quaternion algebra ${B/\mathbb{Q}}$ . For an embedding ${O_\kappa \rightarrow O_B}$ , a maximal order in B, and a two sided O B -ideal Λ, there is a morphism ${j_\Lambda:{\mathcal C} \rightarrow {\mathcal M}}$ and a pullback ${j_\Lambda^*: \widehat{{\rm CH}}^1(\mathcal{M}) \rightarrow \widehat{{\rm CH}}^1(\mathcal C)}$ . Our main result is an expression for the pullback ${j^*_\Lambda \widehat{\phi}_{\mathcal M}(\tau)}$ as a linear combination of products of ${\widehat{\phi}_{\mathcal C}(\tau)}$ ’s and classical weight ${\frac{1}{2}}$ theta series.  相似文献   

9.
Let ${\mathcal{L}}$ be a ${\mathcal{J}}$ -subspace lattice on a Banach space X over the real or complex field ${\mathbb{F}}$ with dim X ≥ 2 and Alg ${\mathcal{L}}$ be the associated ${\mathcal{J}}$ -subspace lattice algebra. For any scalar ${\xi \in \mathbb{F}}$ , there is a characterization of any linear map L : Alg ${\mathcal{L} \rightarrow {\rm Alg} {\mathcal{L}}}$ satisfying ${L([A,B]_\xi) = [L(A),B]_\xi + [A,L(B)]_\xi}$ for any ${A, B \in{\rm Alg} {\mathcal{L}}}$ with AB = 0 (rep. ${[A,B]_ \xi = AB - \xi BA = 0}$ ) given. Based on these results, a complete characterization of (generalized) ξ-Lie derivations for all possible ξ on Alg ${\mathcal{L}}$ is obtained.  相似文献   

10.
Let ${\mathcal{F}}$ be a (0, 1) matrix. A (0, 1) matrix ${\mathcal{M}}$ is said to have ${\mathcal{F}}$ as a configuration if there is a submatrix of ${\mathcal{M}}$ which is a row and column permutation of ${\mathcal{F}}$ . We say that a matrix ${\mathcal{M}}$ is simple if it has no repeated columns. For a given ${v \in \mathbb{N}}$ , we shall denote by forb ${(v, \mathcal{F})}$ the maximum number of columns in a simple (0, 1) matrix with v rows for which ${\mathcal{F}}$ does not occur as a configuration. We say that a matrix ${\mathcal{M}}$ is maximal for ${\mathcal{F}}$ if ${\mathcal{M}}$ has forb ${(v, \mathcal{F})}$ columns. In this paper we show that for certain natural choices of ${\mathcal{F}}$ , forb ${(v, \mathcal{F})\leq\frac{\binom{v}{t}}{t+1}}$ . In particular this gives an extremal characterization for Steiner t-designs as maximal (0, 1) matrices in terms of certain forbidden configurations.  相似文献   

11.
Let A be a densely defined simple symmetric operator in ${\mathfrak{H}}$ , let ${\Pi=\{\mathcal{H},\Gamma_0, \Gamma_1}\}$ be a boundary triplet for A * and let M(·) be the corresponding Weyl function. It is known that the Weyl function M(·) determines the boundary triplet Π, in particular, the pair {A, A 0}, uniquely up to the unitary similarity. Here ${A_0 := A^* \upharpoonright \text{ker}\, \Gamma_0 ( = A^*_0)}$ . At the same time the Weyl function corresponding to a boundary triplet for a dual pair of operators defines it uniquely only up to the weak similarity. We consider a symmetric dual pair {A, A} with symmetric ${A \subset A^*}$ and a special boundary triplet ${\widetilde{\Pi}}$ for{A, A} such that the corresponding Weyl function is ${\widetilde{M}(z) = K^*(B-M(z))^{-1} K}$ , where B is a non-self-adjoint bounded operator in ${\mathcal{H}}$ . We are interested in the problem whether the result on the unitary similarity remains valid for ${\widetilde{M}(\cdot)}$ in place of M(·). We indicate some sufficient conditions in terms of the operators A 0 and ${A_B= A^* \upharpoonright \text{ker}\, (\Gamma_1-B \Gamma_0)}$ , which guaranty an affirmative answer to this problem. Applying the abstract results to the minimal symmetric 2nth order ordinary differential operator A in ${L^2(\mathbb{R}_+)}$ , we show that ${\widetilde{M}(\cdot)}$ defined in ${\Omega_+ \subset \mathbb{C}_+}$ determines the Dirichlet and Neumann realizations uniquely up to the unitary equivalence. At the same time similar result for realizations of Dirac operator fails. We obtain also some negative abstract results demonstrating that in general the Weyl function ${\widetilde{M}(\cdot)}$ does not determine A B even up to the similarity.  相似文献   

12.
Let ${(\Omega, \mathcal{F}, P)}$ be a probability space. For each ${\mathcal{G}\subset\mathcal{F}}$ , define ${\overline{\mathcal{G}}}$ as the σ-field generated by ${\mathcal{G}}$ and those sets ${F\in \mathcal{F}}$ satisfying ${P(F)\in\{0,1\}}$ . Conditions for P to be atomic on ${\cap_{i=1}^k\overline{\mathcal{A}_i}}$ , with ${\mathcal{A }_1,\ldots,\mathcal{A}_k\subset\mathcal{F}}$ sub-σ-fields, are given. Conditions for P to be 0-1-valued on ${\cap_{i=1}^k \overline{\mathcal{A}_i}}$ are given as well. These conditions are useful in various fields, including Gibbs sampling, iterated conditional expectations and the intersection property.  相似文献   

13.
Let ${\mathcal{A}}$ be a ${\mathbb{C}}$ -algebra, δ be a derivation on ${\mathcal{A}}$ and ${\mathcal{M}}$ be a left ${\mathcal{A}}$ -module. A linear map ${\tau : \mathcal{M} \rightarrow \mathcal{M}}$ is called a generalized derivation relative to δ if ${\tau(am)=a\tau(m)+\delta(a)m\,(a \in \mathcal{A}, m \in \mathcal{M})}$ . In this article first we study the existence of generalized derivations. In particular we show that free modules and projective modules always have nontrivial generalized derivations relative to nonzero derivations of ${\mathcal{A}}$ . Then we investigate the invariance of prime submodules under generalized derivations. Specifically we show that every minimal prime submodule of ${\mathcal{M}}$ is invariant under every generalized derivation. Moreover we obtain analogs of Posner’s theorem for generalized derivations. In the case that ${\mathcal{A}}$ is a Banach algebra and ${\mathcal{M}}$ is a Banach left ${\mathcal{A}}$ -module, we study the existence of continuous generalized derivations and automatic continuity of generalized derivations.  相似文献   

14.
In a natural way, we can ??lift?? any operation defined on a set A to an operation on the set of all non-empty subsets of A and obtain from any algebra ( ${A, \Omega}$ ) its power algebra of subsets. G. Gr?tzer and H. Lakser proved that for a variety ${\mathcal{V}}$ , the variety ${\mathcal{V}\Sigma}$ generated by power algebras of algebras in ${\mathcal{V}}$ satisfies precisely the consequences of the linear identities true in ${\mathcal{V}}$ . For certain types of algebras, the sets of their subalgebras form subalgebras of their power algebras. They are called the algebras of subalgebras. In this paper, we partially solve a long-standing problem concerning identities satisfied by the variety ${\mathcal{VS}}$ generated by algebras of subalgebras of algebras in a given variety ${\mathcal{V}}$ . We prove that if a variety ${\mathcal{V}}$ is idempotent and entropic and the variety ${\mathcal{V}\Sigma}$ is locally finite, then the variety ${\mathcal{VS}}$ is defined by the idempotent and linear identities true in ${\mathcal{V}}$ .  相似文献   

15.
Let (T t ) t?≥ 0 be a bounded analytic semigroup on L p (Ω), with 1?<?p?<?∞. Let ?A denote its infinitesimal generator. It is known that if A and A * both satisfy square function estimates ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{\frac{1}{2}} T_t(x)\vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^p} \lesssim \|x\|_{L^p}}$ and ${\bigl\|\bigl(\int_{0}^{\infty} \vert A^{*\frac{1}{2}} T_t^*(y) \vert^2 {\rm d}t \bigr)^{\frac{1}{2}}\bigr\|_{L^{p^\prime}} \lesssim \|y\|_{L^{p^\prime}}}$ for ${x\in L^p(\Omega)}$ and ${y\in L^{p^\prime}(\Omega)}$ , then A admits a bounded ${H^{\infty}(\Sigma_\theta)}$ functional calculus for any ${\theta>\frac{\pi}{2}}$ . We show that this actually holds true for some ${\theta<\frac{\pi}{2}}$ .  相似文献   

16.
17.
Consider the real Clifford algebra ${\mathbb{R}_{0,n}}$ generated by e 1, e 2, . . . , e n satisfying ${e_{i}e_{j} + e_{j}e_{i} = -2\delta_{ij} , i, j = 1, 2, . . . , n, e_{0}}$ is the unit element. Let ${\Omega}$ be an open set in ${\mathbb{R}^{n+1}}$ . u(x) is called an h-regular function in ${\Omega}$ if $$D_{x}u(x) + \widehat{u}(x)h = 0, \quad\quad (0.1)$$ where ${D_x = \sum\limits_{i=0}^{n} e_{i}\partial_{xi}}$ is the Dirac operator in ${\mathbb{R}^{n+1}}$ , and ${\widehat{u}(x) = \sum \limits_{A} (-1)^{\#A}u_{A}(x)e_{A}, \#A}$ denotes the cardinality of A and ${h = \sum\limits_{k=0}^{n} h_{k}e_{k}}$ is a constant paravector. In this paper, we mainly consider the Hilbert boundary value problem (BVP) for h-regular functions in ${\mathbb{R}_{+}^{n+1}}$ .  相似文献   

18.
Let ${\mathcal{L}}$ be a subspace lattice on a complex Banach space X and δ be a linear mapping from ${alg\mathcal{L}}$ into B(X) such that for every ${A \in alg\mathcal{L}, 2\delta(A^2)=\delta(A)A + A\delta(A)}$ or ${\delta(A^3) = A\delta(A)A}$ . We show that if one of the following holds (1) ${\vee\{L : L \in \mathcal{J}(\mathcal{L})\}=X}$ , (2) ${\wedge\{L_-: L \in \mathcal{J}(\mathcal{L})\}=(0)}$ and X is reflexive, then δ is a centralizer. We also show that if ${\mathcal{L}}$ is a CSL and δ is a linear mapping from ${alg\mathcal{L}}$ into itself, then δ is a centralizer.  相似文献   

19.
In classical linear algebra, extending the ring of scalars of a free module gives rise to a new free module containing an isomorphic copy of the former and satisfying a certain universal property. Also, given two free modules on the same ring of scalars and a morphism between them, enlarging the ring of scalars results in obtaining a new morphism having the nice property that it coincides with the initial map on the isomorphic copy of the initial free module in the new one. We investigate these problems in the category of free ${\mathcal{A}}$ -modules, where ${\mathcal{A}}$ is an ${\mathbb{R}}$ -algebra sheaf. Complexification of free ${\mathcal{A}}$ -modules, which is defined to be the process of obtaining new free ${\mathcal{A}}$ -modules by enlarging the ${\mathbb{R}}$ -algebra sheaf ${\mathcal{A}}$ to a ${\mathbb{C}}$ -algebra sheaf, denoted ${\mathcal{A}_\mathbb{C}}$ , is an important particular case (see Proposition 2.1, Proposition 3.1). Attention, on the one hand, is drawn on the sub- ${_{\mathbb{R}}\mathcal{A}}$ -sheaf of almost complex structures on the sheaf ${{_\mathbb{R}}\mathcal{A}^{2n}}$ , the underlying ${\mathbb{R}}$ -algebra sheaf of a ${\mathbb{C}}$ -algebra sheaf ${\mathcal{A}}$ , and on the other hand, on the complexification of the functor ${\mathcal{H}om_\mathcal {A}}$ , with ${\mathcal{A}}$ an ${\mathbb{R}}$ -algebra sheaf.  相似文献   

20.
Let ?? be a bounded domain in ${\mathbb{R}^{n}, n\geq2}$ . We use ${\mathcal{M}_{\Omega}}$ to denote the collection of all pairs of (A, u) such that ${A\subset\Omega}$ is a set of finite perimeter and ${u\in H^{1}\left( \Omega\right)}$ satisfies $$u\left( x\right) =0\quad\text{a.e.}x\in A.$$ We consider the energy functional $$E_{\Omega}\left( A,u\right) =\int\limits_{\Omega}\left\vert\triangledown u\right\vert ^{2}+P_{\Omega}\left( A\right)$$ defined on ${\mathcal{M}_{\Omega}}$ , where P ??(A) denotes the perimeter of A inside ??. Let ${\left( A,u\right)\in\mathcal{M}_{\Omega}}$ be a minimizer with volume constraint. Our main result is that when n????7, u is locally Lipschitz and the free boundary ?A is analytic in ??.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号