首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 901 毫秒
1.
In an effort to develop hybrid organic solar cells with improved power conversion efficiency (PCE), devices based on poly (3-hexylthiophene) (P3HT):phenyl C61-butyric acid methyl ester (PCBM) active layer and poly (3,4-ethylenedioxythiophene) (PEDOT):poly (styrenesulfonate) (PSS) buffer layers were prepared. A systematic replacement of PCBM was achieved by introducing nanostructured TiO2 (∼15 nm particle size), dissolved separately in chlorobenzene (CB) and 1,2 –dichlorobenzene (DCB), to the (P3HT:PCBM) active layer while keeping a fixed amount for P3HT. To understand the effect of fullerene replacement with the inorganic metal oxide nanoparticles on different properties of resulting devices, a variety of techniques such as Current–Voltage (J–V) characteristics, Field Emission Scanning Electron Microscopy (FESEM), Atomic Force Microscopy (AFM), Ultravoilet-Visible (UV–Vis) Spectrophotometry and External Quantum Efficiency (EQE) were employed. The addition of TiO2 nanoparticles in the active layer improved the power conversion efficiency (PCE) of P3HT:PCBM devices. The addition of TiO2 nanoparticles using CB as solvent enhanced the absorption in visible region and also introduced a red shift in the absorption spectra. A significant increase in EQE was observed for devices with TiO2 nanoparticles in the active layer. Mixing TiO2 also increased the surface roughness of the active layer where TiO2 nanoparticles were found to agglomerate as their concentration increased relative to fullerene derivative. A complete agglomeration of TiO2 was observed in the absence of PCBM.  相似文献   

2.
A novel concept based on the use of solutions containing already qualified crystalline antimony-doped tin oxide SnO2:Sb (ATO) nanoparticles has been developed. ATO nanoparticles are decorated by reduced graphene oxide (rGO) through a hydrothermal synthesis method. The electrical and optical properties of the graphene oxide films are investigated systematically. The sheet resistance (R ) of the ATO–rGO films decreases with the increase in the rGO content in the precursor solution. The R can be decreased after the ATO–rGO films annealing in the air for 1 h and can be further decreased by depositing Au on the surface of the films. The optimum property of the ATO–rGO film shows that the R is 80 Ω/□ and the transmittance is about 70 %. The ATO–rGO films are used as the anode of the organic solar cells. The anode film impact on the performance of the devices is studied. Finally, the power conversion efficiency (PCE) of the device based on the poly-(3-hexylthiophene): [6, 6]-phenyl C61-butyric acid methyl ester (PCBM) blended is 1.85 %, and the PCE of the device based on the poly-benzo[1,2-b:4,5-b′] dithio-phene thieno[3,4-b] thiophene:PCBM blended is 3.4 %.  相似文献   

3.
Bilayer CeO2/TiO2 films with high-k dielectric property were prepared by rf magnetron sputtering technique at room temperature. Effect of annealing treatment on resistive switching (RS) properties of bilayer CeO2/TiO2 films in O2 ambient at different temperature in the range of 350–550 °C was investigated. Our results revealed that the bilayer films had good interfacial property at 500 °C and this annealing temperature is optimum for different RS characteristics. Results showed that bilayer CeO2/TiO2 film perform better uniformity and reliability in resistive switching at intermediate temperature (i.e. 450 °C and 500 °C) instead of low and high annealing temperature (i.e. 350 °C and 550 °C) at which it exhibits poor crystalline structure with more amorphous background. Less Gibbs free energy of TiO2 as compared to CeO2 results in an easier re-oxidation of the filament through the oxygen exchange with TaN electrode. However, the excellent endurance property (>2500 cycles), data retentions (105 s) and good cycle-to-cycle uniformity is observed only in 500 °C annealed devices. The plots of cumulative probability, essential memory parameter, show a good distribution of Set/Reset voltage.  相似文献   

4.
A simple and versatile route of forming sol–gel-derived metal oxide n-type electron transport layers (ETLs) for flexible inverted polymer solar cells (PSCs) is proposed using low-temperature photochemical activation process. The photochemical activation, which is induced by deep ultraviolet irradiation on sol–gel films, allows formation of metal oxide n-type ETLs such as zinc oxide (ZnO) and indium gallium zinc oxide films at a low temperature. Compared to poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester inverted PSCs with thermally annealed ZnO ETLs (optimized efficiency of 3.26 ± 0.03 %), the inverted PSCs with photo-activated ZnO ETLs showed an improved efficiency of 3.60 ± 0.02 %. The enhanced photovoltaic property is attributed to efficient charge collection from low overall series resistance and high surface area-to-geometric area ratio by the photo-activated ZnO ETLs.  相似文献   

5.
Very thin films of TiO2 and Ti2O3 were deposited by evaporation on Ag, on silver oxidized by an oxygen plasma and on Pt. Depending on the coverage, there were changes in the values of the binding energy (BE) and the Auger parameter (α′) of O and Ti. These shifts occur in the opposite direction with respect to that previously found for TiO2 supported on insulators. Among others, reasons for these shifts are the different relaxation energy of photoholes and the occurrence of charge transfer processes at the metal oxide/metal interface. UV-visible absorption spectra of thin films of TiO2Ag composites have shown a narrowing in the gap energy (Eg) of the oxide in respect to bulk titania. This observation shows the existence of a correlation between Eg and α′ when TiO2 is supported on a metal surface. The Auger parameter of O and Ti is also sensitive to the intercalation of TiO2 within a “sandwich” structure of SiO2 and Ag, and the values found for the spectroscopic parameters are intermediate between those of TiO2 supported on Ag and SiO2. This result opens up the possibility of modulating the electronic properties of thin layers of TiO2 by interaction with other materials.  相似文献   

6.
In this study we investigated the release of titanium dioxide (TiO2), silver (Ag) and silica (SiO2) engineered nanoparticles (ENPs) from three different paints by using standardized water immersion test for coatings. Fibre-cement panels were coated with paints containing ENPs and then exposed to UV light and abraded to simulate weathering. After the static water immersion test, we observed a very low release of Ti (4–8 μg/l), while the Ag measured in leachates was under detection limit (0.1 μg/l). A small release of Si was measured in leachates, with 73 mg/l of Si released from paints containing SiO2 ENPs after 120 h of water immersion. The cumulative loss of Si was about 1.8 % with respect to initial amount of Si in paint. Microscopic results highlighted that SiO2 ENPs are mainly released in form of agglomerates with other particles, and only very few single SiO2 ENPs were found in leachates. The results confirmed that Si migration is related to immersion cycles (wetting and drying cycles) of tested paints.  相似文献   

7.
The novel TiO2 nanopartilces/nanowires (TNPWs) composite with ZrO2 nanoparticles (ZNPs) shell-coated photoanodes were prepared to fabricate high-performance dye-sensitized solar cell (DSSC) based on different types of electrolytes. Hafnium oxide (HfO2) is a new and efficient blocking layer material applied over the TNPWs-ZNPs core-shell photoanode film. TiO2 nanoparticles (TNPs) and TiO2 nanowires (TNWs) were characterized by X-ray diffractometer (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). DSSCs were fabricated using the novel photoanodes with an organic sensitizer D149 dye and different types of electrolytes namely liquid electrolyte, ionic liquid electrolyte, solid-state electrolyte, and quasi-solid-state electrolyte. The DSSC-4 made through the novel core-shell photoanode using quasi-solid-state electrolyte showed better photocurrent efficiency (PCE) as compared to the other DSSCs. It has such photocurrent-voltage characteristics: short circuit photocurrent (Jsc)?=?19 mA/cm2, the open circuit voltage (Voc)?=?650 mV, fill factor (FF)?=?65 %, and PCE (η)?=?8.03 %. The improved performance of DSSC-4 is ascribed to the core-shell with blocking layer photoanode could increased electron transport and suppressed recombination of charge carriers at the TNPWs-ZNPs/dye/electrolyte interface.  相似文献   

8.
Zhou JP  Chen XH  Xu Z 《光谱学与光谱分析》2011,31(10):2684-2687
P3HT:PCBM薄膜的快速和缓慢成膜过程能显著的改变异质结聚合物太阳能电池性能.通过调节旋转时间以及薄膜退火前的间隔时间,研究了P3HT:PCBM混合薄膜缓慢生长所需最佳时间.结果表明,在转速800 r·min-1下旋涂薄膜,经过50~80 s的旋涂,接着放置样品薄膜30 min以上,然后再对薄膜进行退火处理,电池效...  相似文献   

9.
A device of multiple nano-TiO2 layers was proposed and fabricated to prevent a dye/nano-TiO2 region from serious photo-degradation. In this device, the top of the dye/TiO2 region was designed to be coated using sol-gel nano-TiO2 thin films to shield UV irradiation from the photo-degradation effect. The sol-gel TiO2 was prepared in a low temperature (75 °C) and verified as nano-sized particles and an anatase crystalline structure. Different devices of the multi-layer samples fabricated using different compositions of nano-TiO2 were produced and exposed for UV irradiation tests. Results show that the presence of the sol-gel TiO2 films coated on top of the dye/TiO2 region can significantly alleviate the dye photo-degradation under UV irradiation. This multi-layer device can effectively improve the photo-stability of the dye/TiO2 region in a UV-exposure environment.  相似文献   

10.
A methylcellulose–polysulfide gel polymer electrolyte has been prepared for application in quantum dot-sensitized solar cells (QDSSCs) having the configuration FTO/TiO2/CdS/ZnS/SiO2/electrolyte/Pt(cathode). The electrolyte with the composition of 30.66 wt.% methylcellulose, 67.44 wt.% Na2S, and 1.90 wt.% sulfur exhibits the highest conductivity of 0.183 S cm?1 with the lowest activation energy of 6.14 kJ mol?1. CdS quantum dot sensitizers have been deposited on TiO2 film via the successive ionic layer absorption and reaction (SILAR) method. The QDSSC fabricated using the highest conducting electrolyte and CdS QD prepared with five SILAR cycles exhibits a power conversion efficiency (PCE) of 0.78%. After deposition of zinc sulfide (ZnS) and silicon dioxide SiO2 passivation layers, the PCE of the QDSSC with photoanode arrangement of TiO2/CdS(5)/ZnS(2)/SiO2 increased to 1.42%, an improvement in performance by 82%.  相似文献   

11.
Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO2) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers.For the flavour removal test, two types of multilayer films were prepared, DLC/TiO2 films and DLC/TiO2/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO2-coated and the DLC/TiO2/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO2/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO2/DLC film had a photocatalytic effect even though the TiO2 film was covered with the DLC film.  相似文献   

12.
This paper aims to study fabrication and characterization of silver/titanium oxide composite nanoparticle through sonochemical process in the presence of ethylene glycol with alkaline solution. By using ultrasonic irradiation of a mixture of silver nitrate, the dispersed TiO2 nanoparticle in ethylene glycol associated with aqueous solution of sodium oxide yields Ag/TiO2 composite nanoparticle with shell/core-type geometry. The powder X-ray diffraction (XRD) of the Ag/TiO2 composites showed additional diffraction peaks corresponding to the face-centered cubic (fcc) structure of silver crystallization phase, apart from the signals from the cores of TiO2. Transmission electron microscopy (TEM) images of Ag/TiO2 composites, which average particle size is roughly 80 nm, reveal that the titanium oxide coated by Ag nanoparticle with a grain size of about 2–5 nm. Additionally, the formation of silver nanoparticles on TiO2 was monitored by ultraviolet visible light spectrophotometer (UV–Vis). As measured the optical absorption spectra of as-synthesized Ag nanoparticle varying with time, the mechanism of surface formatting silver shell on the cores of TiO2 could be explored by autocatalytic reaction; the conversion of Ag particle from silver ion is 98% for the reaction time of 1000 s; and the activity energy of synthesizing Ag nanoparticles on TiO2 is 40 kJ/mol at temperature ranging from 5 to 25 °C. Hopefully, this preliminary investigation could be used for mass production of composite nanoparticles assisted by ultrasonic chemistry in the future.  相似文献   

13.
The mesoscopic perovskite solar cells (PSCs) based on titanium oxide (TiO2) with a certified 25.2% efficiency are the forefront devices in the PSCs field. Hence, it can conclude the mesoporous titanium oxide (mp-TiO2) is one of the most promising candidates to use as an electron transport layer (ETL) in PSCs. Improving the conductivity of mp-TiO2 can consider as a simple route to motivate the electron extraction ability of this layer and increase the efficiency of PSCs. Herein, rubidium chloride (RbCl) was introduced as an additive source to boost the optoelectronic properties of mp-TiO2 ETL. It was observed through ETL modification with RbCl, the optical transmittance of mp-TiO2 remains constant but increases its electro-conductivity. Results showed that the morphology and crystalline properties of the perovskite layer with a modified ETL substrate is improved. It indicates a perovskite layer with enlarger grains and lower lead iodide (PbI2) surplus. Altogether, ETL modification brings a champion efficiency of 11.10% for hole transport layer (HTL)-free PSCs higher than that of 8.65% for the HTL-free PSCs based on pristine ETL. Besides, Modified PSCs compared to pristine PSCs showed higher stability response as a result of lower grain boundaries in the modified perovskite layer.  相似文献   

14.
研究了二甲基亚砜(DMSO)掺杂浓度对基于聚(3-己基噻吩)(P3HT)和(6,6)-苯基碳60丁酸甲酯(PCBM)为有源层的聚合物太阳能电池性能影响。结果表明,掺杂DMSO可以提高聚合物太阳能电池短路电流密度和填充因子。DMSO掺杂质量比为3%时,电池短路电流密度提高到7.88 mA·cm-2,填充因子为55.5%。能量转换效率达到2.54%,相比没有掺杂DMSO的电池,能量转换效率提高了17%。傅里叶变换红外光谱被用于鉴定和分析掺杂DMSO对材料P3HT∶PCBM化学性质的影响。傅里叶变换红外光谱表明,掺杂后P3HT和PCBM的化学性质都没有改变。为分析掺杂DMSO改善器件能量转换效率的原因,通过紫外-可见光谱和电流密度-电压特性曲线分别表征器件的光吸收能力以及电致发光器件的载流子迁移率。与P3HT∶PCBM薄膜相比,P3HT∶PCBM∶DMSO薄膜在可见光范围内的吸收峰有明显红移且吸收强度增强。可见光吸收的改善是实现短路电流密度提高的有力保障。太阳能电池性能的增强是因为DMSO的掺杂提高了P3HT∶PCBM的载流子迁移率和吸收光谱宽度。  相似文献   

15.
TiO2 thin films were deposited on a glass substrate by the radio frequency magnetron sputtering method, and annealed for 2 h at temperatures of 550°C. Then, 60Co γ rays with different doses were used to irradiate the resulting TiO2 thin films. The surface features of films before and after irradiation were observed by scanning electron microscope (SEM). Simultaneously, the crystal structure and optical properties of films before and after irradiation were studied by X-ray diffraction (XRD), UV–VIS transmission spectrum and Photoluminescence (PL) spectrum, respectively. The SEM analysis shows that the film is smooth with tiny particles on the film surface, and non-crystallization trend was clear after irradiated with γ rays. The XRD results indicated that the structure of the film at the room temperature mainly exists in the form of amorphous and mixed crystal at a sputtering power of 200 W, and non-crystallinity was more obvious after irradiation. Obvious difference can be found for the transmissibility of the irradiated and pre irradiation TiO2 films by the UV-VIS spectra. The color becomes light yellow, and the new absorption edge also appeared at about 430 nm. PL spectra and photocatalysis experiments indicate that the photocatalysis degradation rate of the TiO2 films on methylthionine chloride solution irradiated with the maximum dose can be increased to 90%.  相似文献   

16.
A series of thin films made with TiO2 nanoparticles with a varied anatase/rutile phase ratio is prepared on conducting glass substrates using a spin-coating method. The structure, morphology, and optical properties of TiO2 nanopowders and thin films fabricated are studied using powder X-ray diffraction, scanning electron microscopy, and optical spectroscopy. The TiO2 nanostructured films created are used as photoelectrodes for the fabrication of perovskite solar cells (PSCs). The photovoltaic characteristics of PSCs under AM1.5 light illumination (1000 W/m2) under ambient conditions are studied. It is shown that the best efficiency of solar-to-electrical energy conversion, namely, 9.3%, is obtained for the PSC with a photoelectrode based on a TiO2 film with an anatase/rutile mixed phase ratio of 86/14%.  相似文献   

17.
Solution-processed nickel oxide (s-NiOx) was synthesized for use as hole-transport layers (HTLs) in the fabrication of polymer solar cell (PSC) devices. The s-NiOx thin-films were deposited using spin-coating and post-annealed at 300 °C, 400 °C, or 500 °C. With increased annealing temperature, the nickel acetate precursor decomposes more fully and forms s-NiOx films that show larger crystalline grain sizes with lower root mean square surface roughness. Bulk heterojunction solar cells fabricated with the new random polymer RP(BDT-PDBT) and [6,6]-phenyl-C70-butyric acid methyl ester (PC70BM) using s-NiOx as HTLs exhibit a 4.46% enhancement in power conversion efficiency and better stability compared to conventional PSCs using poly (3,4-ethylenedioxythiophene):poly(styrene sulfonate) as HTLs. We believe that the solution-processable and highly stable s-NiOx could be a potential alternative for functional interface materials in optoelectronic devices.  相似文献   

18.
Ag/TiO2 sol with narrow particle size distribution was synthesized using TiCl4 as the starting material. TiCl4 was converted to Ti(OH)4 gel. The Ag/TiO2 sol was prepared by a process where H2O2 was added and then heated at 90–97 °C. After condensation reaction and crystallization, a transparent sol with suspended Ag/TiO2 was formed. Ag/TiO2 was characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, contact angle analysis, and X-ray photoelectron spectroscopy. The photocatalytic properties of Ag/TiO2 film were evaluated by degradation of methylene blue in aqueous solution under UV light irradiation. The suspended Ag/TiO2 particles were rhombus primary particles with the major axis ca. 40 nm and the minor axis ca. 10 nm. Ag nanoparticles were well dispersed on TiO2 and the particle size was only 1–2 nm. Ag could restrain the recombination of photo-generated electrons and holes effectively. Transparent thin films could be obtained through dip-coating glass substrate in the sol. The thin film had strong hydrophilicity after being illuminated by UV light. Ag/TiO2 film showed a significant increase in photocatalytic activity compared to the TiO2 film. The high amount of surface hydroxyls on Ag/TiO2 film also played an important role in its photocatalytic activity.  相似文献   

19.
In this research, Cu-doped TiO2 thin films have been successfully deposited onto a glass substrate by Sol–gel technique using dip coating method. The films were annealed at different annealing temperatures (400–500 °C) for 1 h. The structural, optical and electrical properties of the films were investigated and compared using X-ray Diffraction, UV–visible spectrophotometer and 4-point probe method. Optical analysis by mean transmittance T(λ) and absorption A(λ) measurements in the wavelength range between 300 to 800 nm allow us to determine the indirect band gap energy. DRX analysis of our thin films of TiO2:Cu shows that the intensities of the line characteristic of anatase phase increasing in function of the temperature.  相似文献   

20.
Silver nanorods with average diameters of 120-230 nm and aspect ratio of 1.7-5.0 were deposited on the surface of TiO2 films by photoelectrochemical reduction of Ag+ to Ag under UV light. The composite films prepared on soda-lime glass substrates were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). The results show that the TiO2 film after UV irradiation in AgNO3 solution is composed of anatase phase TiO2 and metallic silver with face centered cubic structure. Other compounds cannot be found in the final films. The maximum deposition content of silver particles on the surface of TiO2 film was obtained with the AgNO3 concentration of 0.1 M. The kinetic growth rates of silver particles can be controlled by photocatalytic activity of TiO2 films. The studies suggest that the growth rates of silver particles increase with the enhancement of photocatalytic activity of TiO2 films. The maximum growth rate of silver particles loaded on TiO2 films can be up to 0.353 nm min−1 among samples 1#, 2# and 3#, while the corresponding apparent rate constant of TiO2 is 1.751 × 10−3 min−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号