首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The energetic stability, electronic structure and magnetic properties of Pt8nIrn clusters have been investigated by employing the spin-polarised generalised gradient approximation. The cubic structure is expected to be the effective building block in Ir-rich clusters after optimisation extensively. The average binding energy of all the clusters presents the linear increment trend with iridium atoms, due to the stronger interaction between Ir atoms than Pt atoms. Bader charge analysis shows how tiny charge transfers from iridium to platinum. The atomic moments of Ir are larger than that of Pt, and the Ir-rich clusters show greater moments than the Pt-rich cluster, with the exception of Ir8 and Ir7Pt. A unique magnetic property is found in the Pt4Ir4 cluster, where two Pt atoms show antiferromagnetic alignment and the other atoms are found to be aligned ferromagnetically.  相似文献   

2.
Using the 73.0 keV Mössbauer resonance in193Ir, the chemical form of iridium in bimetallic Pt?Ir catalysts supported on amorphous silica has been determined after ionic co-exchange, calcination and reduction in hydrogen. The compositions of the highly dispersed bimetallic Pt1?xIrx clusters as determined from the measured isomer shifts reveal a strong tendency for segregation of iridium and platinum.  相似文献   

3.
Experimentally, it is known that very small amounts of thorium and/or cerium added to iridium metal form a precipitate, Ir5Th/Ir5Ce, which improves the high-temperature mechanical properties of the resulting alloys. We demonstrate that there are low-energy configurations for nanoscale precipitates of these phases in Ir, and that these coherent arrangements may assist in producing improved mechanical properties. One precipitate/matrix orientation gives a particularly low interfacial energy, and a low lattice misfit. Nanolayer precipitates with this orientation are found to be likely to form with little driving force to coarsen. The predicted morphology of the precipitates and their orientation with the matrix phase provide a potential experiment that could be used to test these predictions.  相似文献   

4.
We report a study of Irn/TiO2 samples prepared by size and energy-selected deposition of Irn+ (n=1, 2, 5, 10, 15) on rutile TiO2(1 1 0) at room temperatures. The Ir clusters are found to be formally in the zero oxidation state, and there are no significant shifts in Ir 4f binding energy with cluster size. Over a wide range of impact energies, both Ir XPS intensity and peak position are constant, indicating constant sticking coefficient, and no impact-driven redox chemistry. Low energy ion scattering spectroscopy (ISS) suggests that the deposited Ir clusters remain largely intact, neither fragmenting nor agglomerating, and retaining 3-D structures for the larger sizes. For impact energies above 10 eV/atom, comparison of ISS and XPS data show that the Ir clusters are penetrating into the TiO2 surface, with the extent of penetration increasing with both per atom energy and cluster size. Temperature programmed desorption (TPD) of CO is used to further characterize the deposited Irn. This system shows pronounced substrate-mediated adsorption (SMA) in low CO exposures, with strong dependence on cluster size. ISS and sputtering experiments indicate that CO adsorbed via SMA is bound differently than CO adsorbed in high dose experiments. In experiments with sequential C16O and C18O doses, facile C16O → C18O exchange is observed for Ir5 and larger clusters, but not for Ir2. The peak CO desorption temperature is found to decrease with cluster size. The cycle of CO adsorption and heating comprising a TPD experiment have a dramatic effect on the sample morphology, leading to encapsulation of Ir by a thin TiOx layer.  相似文献   

5.
In this paper a new cyclometalated iridium(III) coumarin complex, Ir(III)bis(3-(2-benzothiazolyl)coumarinato N,C4)(acetylacetonate) (Ir(L)2(acac)), was synthesized and characterized. X-ray crystallography demonstrated that the iridium(III) ion is hexacoordinated by two C atoms and two N atoms from 3-(2-benzothiazolyl)coumarinato ligands and two O atoms from acac ligand, displaying distorted octahedral coordination geometry. The Ir(L)2(acac) complex has good thermal stability with less than 2 % weight-reduction occurring at 300 °C, and exhibits strong reddish orange emission. The results shown that Ir(L)2(acac) is useful for fabrication organic light-emitting diodes.  相似文献   

6.
Krishnamurthy  V. V.  Suzuki  M.  Kawamura  N.  Ishikawa  T.  Kohori  Y. 《Hyperfine Interactions》2001,136(3-8):361-365
The formation of an induced 5d magnetic moment on Ir in Fe97Ir3, Co95Ir5 and Ni95Ir5 alloys has been investigated by X-ray magnetic circular dichroism (XMCD) and X-ray absorption spectra (XAS) measurements at Ir L 2,3 edges. Using a sum rule which relates the integrals of these spectra with the ground state expectation value of the orbital angular momentum 〈L Z 〉 of the probed atom, the orbital moment m orb of Ir could be determined as −0.071(2) μ B in an Fe host, −0.067(2) μ B in a Co host and −0.041(1) μ B in a Ni host. The spin magnetic moment m spin of Ir is also found to be the maximal in Fe and the minimal in Ni. The total moment of Ir is found to be approximately 1/5 of total moment of Fe, 2/13 of the total moment of Co, and 1/4 of the total moment of Ni. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   

7.
Spin–orbit coupling in 5d transition metal oxides such as Ir oxides is expected to be strong due to large atomic number of Ir and electron correlation strength will be weak due to large radial extension of the 5d orbitals. Hence, various anomalous electronic properties often observed in these systems are attributed to large spin–orbit interaction strength. Employing first principles approaches, we studied the electronic structure of Y 2Ir2O7, which is insulating and exhibits ferromagnetic phase below 150 K. The calculated results reveal breakdown of both the above paradigms. The role of spin–orbit interaction is found to be marginal in determining the insulating ground state of Y 2Ir2O7. A large electron correlation strength is required to derive the experimental bulk spectrum.  相似文献   

8.
利用第一性原理密度泛函理论研究了铝和银在铱的111面的宽范围吸附特性。基于密度泛函理论计算了覆盖度在0.11ML到2.00ML的结构稳定性、原子构型及平均结合能。对于铝原子在铱111面的吸附,最稳定的结构是铝原子覆盖度为0.5ML位于密堆六方空位(hcp-hollow),相应的结合能为-4.68eV;对于亚层铝原子的吸附,最稳定结构是铝原子覆盖度为1.00ML时位于octahedral位置,相应的结合能为-5.28eV。对于覆盖度为2.00ML的满覆盖度混合结构的表层及亚层吸附,最稳定结构是Al位于六方密堆及八方密堆位置,相应的结合能为-4.70eV。这意味着当铝原子以满覆盖度吸附在铱的111面上时,趋向于在铱的111面的亚层形成化学键,而非吸附于表层。相比于铝吸附在铱111面,银的吸附特性呈现出很大的不同,面心位置更为稳定,在覆盖度为0.25ML时其结合能为3.89eV,略微高出密堆六方位置处3.88eV的结合能。  相似文献   

9.
In the present study, the adsorption behaviour of methanol (CH3OH) and ethanol (C2H5OH) molecules over heterofullerene C59B surface is studied by density functional theory calculations. This heterofullerene is obtained from C60 by substituting a carbon atom with a boron atom and relaxing self-consistently the structure to the local minimum. The adsorption of CH3OH and C2H5OH on the C59B is exothermic and the relaxed geometries are stable. The CH3OH and C2H5OH adsorption can also induce a change in the highest occupied molecular orbital and the lowest unoccupied molecular orbital energy gap of the nanocage. The dehydrogenation pathways of CH3OH and C2H5OH via O–H and C–H bonds scission are also examined. The results indicate that O–H bond scission is the most favourable pathway on the C59B surface.  相似文献   

10.
利用第一性原理密度泛函理论研究了铝和银在铱的111面的宽范围吸附特性。基于密度泛函理论计算了覆盖度在0.11ML到2.00ML的结构稳定性、原子构型及平均结合能。对于铝原子在铱111面的吸附,最稳定的结构是铝原子覆盖度为0.5ML位于密堆六方空位(hcp-hollow),相应的结合能为-4.68eV;对于亚层铝原子的吸附,最稳定结构是铝原子覆盖度为1.00ML时位于octahedral位置,相应的结合能为-5.28eV。对于覆盖度为2.00ML的满覆盖度混合结构的表层及亚层吸附,最稳定结构是Al位于六方密堆及八方密堆位置,相应的结合能为-4.70eV。这意味着当铝原子以满覆盖度吸附在铱的111面上时,趋向于在铱的111面的亚层形成化学键,而非吸附于表层。相比于铝吸附在铱111面,银的吸附特性呈现出很大的不同,面心位置更为稳定,在覆盖度为0.25ML时其结合能为3.89eV,略微高出密堆六方位置处3.88eV的结合能。  相似文献   

11.
N. Singh 《Pramana》1999,52(5):511-523
The transition metal pair potential (TMPP) is used to study band structure energy of Rh and Ir. Both metals are found to be most stable in fcc structure down to atomic volume 0.5V 0. The pressure at 0.5V 0 is found to be 5.235 Mbar and 9.216 Mbar in Rh and Ir, respectively. The TMPP is also used to study other properties of these metals like cohesive energy, phonon frequencies at observed volume. The bulk moduli and elastic constants of these metals at observed volume are calculated by including the volume contribution.  相似文献   

12.
The formation of induced 5d magnetic moment on Ir in Fe100−x Ir x (x=3, 10 and 17) and Co100−x Ir x (x=5, 17, 25 and 32) alloys has been investigated by X-ray magnetic circular dichroism (XMCD) at Ir L2,3 absorption edges. Sum rule analysis of the XMCD data show that the orbital moment of Ir is in the range of −0.071(2)μB to −0.030(1)μB in Fe-Ir alloys and −0.067(2)μB to 0.024(1)μB in Co-Ir alloys. We find that the total moment of Ir in Fe-Ir alloys is approximately 1/5 of the total 3d moment on Fe at all the three compositions. In contrast, the total moment on Ir in Co-Ir alloys varies between 1/6 to 1/16 of the 3d moment on cobalt. The observed trends of Ir moments and the role of interatomic exchange interactions in 5d moment formation are discussed.  相似文献   

13.
Growth and nucleation behavior of Ir films grown by atomic layer deposition (ALD) on different interfacial layers such as SiO2, surface-treated TaN, and 3-nm-thick TaN were investigated. To grow Ir thin film by ALD, (1,5-cyclooctadiene) (ethylcyclopentadienyl) iridium (Ir(EtCp)(COD)) and oxygen were employed as the metalorganic precursor and reactant, respectively. To obtain optimal deposition conditions, the deposition temperature was varied from 240 to 420 °C and the number of deposition cycles was changed from 150 to 300. The Ir film grown on the 3-nm-thick TaN surface showed the smoothest and most uniform layer for all the deposition cycles, whereas poor nucleation and three-dimensional island-type growth of the Ir layer were observed on Si, SiO2, and surface-treated TaN after fewer number of deposition cycles. The uniformity of the Ir film layer was maintained for all the different substrates up to 300 deposition cycles. Therefore we suggest that the growth behavior of the Ir layer on different interface layer is related to the chemical bonding pattern of the substrate film or interface layer, resulting in better understand the growth mechanism of Ir layer as a copper diffusion barrier. The ALD-grown Ir films show the preferential direction of (1 1 1) for all the reflections, which indicates the absence of IrO2 in metallic Ir.  相似文献   

14.
The atomic structure and electronic properties of gas-phase and MgO100-supported iridium tetramers are studied using density functional theory. At variance with experimental data, the most stable Ir4 isomer on MgO100 is the square one, as in the gas phase, and the metastable tetrahedral isomer is highly distorted by interactions with the substrate. In the presence of a single carbon adatom, the most stable structure of Ir4 is tetrahedral for both environments and the structural distortion of the adsorbed cluster is reduced. On MgO100, the binding energy of a C adatom to tetrahedral Ir4 is 1.6 eV larger than that to the square isomer, due to strong interactions between C-2p orbitals and a low-energy unoccupied molecular orbital of tetrahedral Ir4.  相似文献   

15.
The paramagnetic hyperfine splitting of Ir4+ (5d5) in K2IrCl6 diluted into diamagnetic K2PtCl6 has been observed at 4.2 K and Ir∶Pt ratios of 1∶10 and 1∶25. In the latter case a narrow paramagnetic pattern with a hyperfine coupling constant ofA=−13.1(2) mm/s was observed, but both samples also exhibit a single Ir4+ line typical for fast relaxation, either because of macroscopic inhomogeneities in the Ir distribution or because part of the Ir spins are still coupled to nearest Ir neighbours.  相似文献   

16.
The Raman and infrared spectra of fac ‐tris(2‐phenylpyridinato‐N,C2′)iridium(III), Ir(ppy)3 and surface‐enhanced resonance Raman spectra of bis(2‐phenyl pyridinato‐) (2,2′bipyridine) iridium (III), [Ir(ppy)2 (bpy)]+ cation were recorded in the wavenumber range 150–1700 cm−1, and complete vibrational analyses of Ir(ppy)3 and [Ir(ppy)2 (bpy)]+ were performed. Most of the vibrational wavenumbers were calculated with density‐functional theory agree with experimental data. On the basis of the results of calculation and comparison of the spectra of both complexes and their analogue [Ru(bpy)3]2+, we assign the vibrational wavenumbers for metal–ligand modes; metal–ligand stretching wavenumbers are 277/307 and 261/236 cm−1 for Ir(ppy)3, and 311/324, 257/270, 199/245 cm−1 for [Ir(ppy)2 bpy]+. Surface‐enhanced Raman scattering spectra of [Ir(ppy)2 bpy]2+ were measured at two wavelengths on the red and blue edges of the low‐energy metal‐to‐ligand charge‐transfer band. According to the enhanced Raman intensities for the vibrational modes of both ligands ppy and bpy, the unresolved charge‐transfer band is deduced to consist of charge‐transfer transitions from the triplet metal to both ligands ppy and bpy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
White light emission is shown to be obtainable at room temperature through the mixing of poly-N-vinylcarbazole (PVC) host fluorescence with fac-tris(2-phenylpyridyl)Ir(III) [Ir(ppy)3] and bis[2-(2′-benzothienyl)pyridinato-N,C3′](acetylacetonate)iridium (III) [Btp2Ir(acac)] dopant phosphorescence whereas at very low temperature through the superposition of poly-N-epoxypropyl-3,6-dibromocarbazole (3,6-DBrPEPC) host and Btp2Ir(acac) dopant phosphorescence emissions. The balance between basic colors is adjusted by the variation of triplet-emitter dopant concentrations. Spin-allowed singlet-singlet energy transfer from the host to iridium chelate dopants by the Forster mechanism is the dominant process in PVC. Spin-forbidden triplet-singlet transfer by the Forster mechanism from the host to the dopant occurs at low temperatures in 3,6-DBrPEPC due to strong spin-orbit coupling induced by the heavy bromine atoms. Spin-allowed transfer from the same host’s triplet excited state to the iridium chelate occurs via electron exchange at high temperatures. __________ Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 75, No. 3, pp. 324–330, May–June, 2008.  相似文献   

18.
The lattice and electronic properties for 5d-shells Ir substituted Fe-based superconductor SmOFe1−xIrxAs (x=0,0.2,0.25,0.3) are investigated based on the density functional theory (DFT) with a spin generalized gradient approximation SGGA+U method. The electronic density of states (DOS) of SmOFe1−xIrxAs is studied and well compared with the results of experimental X-ray photoemission spectroscopy (XPS). The calculation indicated that iridium substitution at the Fe site induced a modification of the FeAs4 tetrahedron and suppressed the magnetic ordering corresponding to the Fe-3d, which may be the main cause of inducing superconductivity in Ir-doped SmOFeAs system.  相似文献   

19.
The hyperfine interaction of192Ir nuclei as dilute impurities in Fe and Ni has been investigated with NMR on oriented nuclei. With the use of highly dilute and pure alloys the line widths could be reduced so far that the quadrupole splitting of192IrFe and192IrNi could be resolved. Taking hyperfine anomalies into account the ground state nuclear moments of192Ir are deduced as |μ|=1.924(10)μ N andQ=2.36(ll) b. The hyperfine field of IrNi was investigated as a function of the Ir concentrationc between 0.01 at % and 5 at %. The dependence ofH HF onc was found to be significantly smaller than that reported from Mössbauer effect measurements. Forc=0.01 at %H HF=?454.7(2.3)kG is deduced. The resonance shift with an external magnetic field has been studied precisely, yieldingK=0.012(23) andK=0.026(12) for the Knight-shift of192Ir in Fe and Ni, respectively.  相似文献   

20.
We present a theoretical study of the electronic and magnetic structure of the 3d-transition metals (M = V, Cr, Mn and Fe) in several overlayer systems. The electronic as well as magnetic structures are investigated for pseudomorphic overlayers (M/Ir(0 0 1)), ordered alloyed overlayers of the type M0.5Ir0.5/Ir(0 0 1) and ordered binary surface alloys of V, Cr, Mn and Fe transition metals on Ir(0 0 1) substrates. The calculations are performed with a self-consistent tight-binding method using the unrestricted Hartree-Fock approximation within the Hubbard model. We obtained metastable c(2 × 2) configurations for V, Cr and Mn and a p(1 × 1) configuration for Fe pseudomorphic overlayers. However, ferrimagnetic configuration has been obtained for the ordered surface alloys M0.5Ir0.5 and the binary alloyed overlayers on Ir(0 0 1) surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号