首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we develop necessary conditions for global optimality that apply to non-linear programming problems with polynomial constraints which cover a broad range of optimization problems that arise in applications of continuous as well as discrete optimization. In particular, we show that our optimality conditions readily apply to problems where the objective function is the difference of polynomial and convex functions over polynomial constraints, and to classes of fractional programming problems. Our necessary conditions become also sufficient for global optimality for polynomial programming problems. Our approach makes use of polynomial over-estimators and, a polynomial version of a theorem of the alternative which is a variant of the Positivstellensatz in semi-algebraic geometry. We discuss numerical examples to illustrate the significance of our optimality conditions.  相似文献   

2.
In this paper, we establish global optimality conditions for quadratic optimization problems with quadratic equality and bivalent constraints. We first present a necessary and sufficient condition for a global minimizer of quadratic optimization problems with quadratic equality and bivalent constraints. Then we examine situations where this optimality condition is equivalent to checking the positive semidefiniteness of a related matrix, and so, can be verified in polynomial time by using elementary eigenvalues decomposition techniques. As a consequence, we also present simple sufficient global optimality conditions, which can be verified by solving a linear matrix inequality problem, extending several known sufficient optimality conditions in the existing literature.  相似文献   

3.
讨论了带线性不等式约束三次规划问题的最优性条件和最优化算法. 首先, 讨论了带有线性不等式约束三次规划问题的 全局最优性必要条件. 然后, 利用全局最优性必要条件, 设计了解线性约束三次规划问题的一个新的局部最优化算法(强局部最优化算法). 再利用辅助函数和所给出的新的局部最优化算法, 设计了带有线性不等式约束三 规划问题的全局最优化算法. 最后, 数值算例说明给出的最优化算法是可行的、有效的.  相似文献   

4.
In this paper, under the existence of a certificate of nonnegativity of the objective function over the given constraint set, we present saddle-point global optimality conditions and a generalized Lagrangian duality theorem for (not necessarily convex) polynomial optimization problems, where the Lagrange multipliers are polynomials. We show that the nonnegativity certificate together with the archimedean condition guarantees that the values of the Lasserre hierarchy of semidefinite programming (SDP) relaxations of the primal polynomial problem converge asymptotically to the common primal–dual value. We then show that the known regularity conditions that guarantee finite convergence of the Lasserre hierarchy also ensure that the nonnegativity certificate holds and the values of the SDP relaxations converge finitely to the common primal–dual value. Finally, we provide classes of nonconvex polynomial optimization problems for which the Slater condition guarantees the required nonnegativity certificate and the common primal–dual value with constant multipliers and the dual problems can be reformulated as semidefinite programs. These classes include some separable polynomial programs and quadratic optimization problems with quadratic constraints that admit certain hidden convexity. We also give several numerical examples that illustrate our results.  相似文献   

5.
In this paper, a new local optimization method for mixed integer quadratic programming problems with box constraints is presented by using its necessary global optimality conditions. Then a new global optimization method by combining its sufficient global optimality conditions and an auxiliary function is proposed. Some numerical examples are also presented to show that the proposed optimization methods for mixed integer quadratic programming problems with box constraints are very efficient and stable.  相似文献   

6.
This paper studies the global optimization of polynomial programming problems using Reformulation-Linearization Technique (RLT)-based linear programming (LP) relaxations. We introduce a new class of bound-grid-factor constraints that can be judiciously used to augment the basic RLT relaxations in order to improve the quality of lower bounds and enhance the performance of global branch-and-bound algorithms. Certain theoretical properties are established that shed light on the effect of these valid inequalities in driving the discrepancies between RLT variables and their associated nonlinear products to zero. To preserve computational expediency while promoting efficiency, we propose certain concurrent and sequential cut generation routines and various grid-factor selection rules. The results indicate a significant tightening of lower bounds, which yields an overall reduction in computational effort for solving a test-bed of polynomial programming problems to global optimality in comparison with the basic RLT procedure as well as the commercial software BARON.  相似文献   

7.
在本文中,我们提出了双凹规划问题和更一般的广义凹规划问题。我们给出了双凹规划问题的整体最优性条件,并构造了一个有限终止外逼近算法。  相似文献   

8.
本文考虑了一类特殊的多项式整数规划问题。此类问题有很广泛的实际应用,并且是NP难问题。对于这类问题,最优性必要条件和最优性充分条件已经给出。我们在本文中将要利用这些最优性条件设计最优化算法。首 先,利用最优性必要条件,我们给出了一种新的局部优化算法。进而我们结合最优性充分条件、新的局部优化算法和辅助函数,设计了新的全局最优化算法。本文给出的算例展示出我们的算法是有效的和可靠的。  相似文献   

9.
In this paper, we introduce a new dual program, which is representable as a semidefinite linear programming problem, for a primal convex minimax programming problem, and we show that there is no duality gap between the primal and the dual whenever the functions involved are sum-of-squares convex polynomials. Under a suitable constraint qualification, we derive strong duality results for this class of minimax problems. Consequently, we present applications of our results to robust sum-of-squares convex programming problems under data uncertainty and to minimax fractional programming problems with sum-of-squares convex polynomials. We obtain these results by first establishing sum-of-squares polynomial representations of non-negativity of a convex max function over a system of sum-of-squares convex constraints. The new class of sum-of-squares convex polynomials is an important subclass of convex polynomials and it includes convex quadratic functions and separable convex polynomials. The sum-of-squares convexity of polynomials can numerically be checked by solving semidefinite programming problems whereas numerically verifying convexity of polynomials is generally very hard.  相似文献   

10.
In this paper, we present sufficient global optimality conditions for weakly convex minimization problems using abstract convex analysis theory. By introducing (L,X)-subdifferentials of weakly convex functions using a class of quadratic functions, we first obtain some sufficient conditions for global optimization problems with weakly convex objective functions and weakly convex inequality and equality constraints. Some sufficient optimality conditions for problems with additional box constraints and bivalent constraints are then derived.   相似文献   

11.
We establish new necessary and sufficient optimality conditions for global optimization problems. In particular, we establish tractable optimality conditions for the problems of minimizing a weakly convex or concave function subject to standard constraints, such as box constraints, binary constraints, and simplex constraints. We also derive some new necessary and sufficient optimality conditions for quadratic optimization. Our main theoretical tool for establishing these optimality conditions is abstract convexity.  相似文献   

12.
We introduce a new method for solving box-constrained mixed-integer polynomial problems to global optimality. The approach, a specialized branch-and-bound algorithm, is based on the computation of lower bounds provided by the minimization of separable underestimators of the polynomial objective function. The underestimators are the novelty of the approach because the standard approaches in global optimization are based on convex relaxations. Thanks to the fact that only simple bound constraints are present, minimizing the separable underestimator can be done very quickly. The underestimators are computed monomial-wise after the original polynomial has been shifted. We show that such valid underestimators exist and their degree can be bounded when the degree of the polynomial objective function is bounded, too. For the quartic case, all optimal monomial underestimators are determined analytically. We implemented and tested the branch-and-bound algorithm where these underestimators are hardcoded. The comparison against standard global optimization and polynomial optimization solvers clearly shows that our method outperforms the others, the only exception being the binary case where, though, it is still competitive. Moreover, our branch-and-bound approach suffers less in case of dense polynomial objective function, i.e., in case of polynomials having a large number of monomials. This paper is an extended and revised version of the preliminary paper [4].  相似文献   

13.
We study optimal control problems for semilinear elliptic equations subject to control and state inequality constraints. In a first part we consider boundary control problems with either Dirichlet or Neumann conditions. By introducing suitable discretization schemes, the control problem is transcribed into a nonlinear programming problem. It is shown that a recently developed interior point method is able to solve these problems even for high discretizations. Several numerical examples with Dirichlet and Neumann boundary conditions are provided that illustrate the performance of the algorithm for different types of controls including bang-bang and singular controls. The necessary conditions of optimality are checked numerically in the presence of active control and state constraints.  相似文献   

14.
提出一个求解带箱子约束的一般多项式规划问题的全局最优化算法, 该算法包含两个阶段, 在第一个阶段, 利用局部最优化算法找到一个局部最优解. 在第二阶段, 利用一个在单位球上致密的向量序列, 将多元多项式转化为一元多项式, 通过求解一元多项式的根, 找到一个比当前局部最优解更好的点作为初始点, 回到第一个 阶段, 从而得到一个更好的局部最优解, 通过两个阶段的循环最终找到问题的全局最优解, 并给出了算法收敛性分析. 最后, 数值结果表明了算法是有效的.  相似文献   

15.
In the present work, we intend to derive conditions characterizing globally optimal solutions of quadratic 0-1 programming problems. By specializing the problem of maximizing a convex quadratic function under linear constraints, we find explicit global optimality conditions for quadratic 0-1 programming problems, including necessary and sufficient conditions and some necessary conditions. We also present some global optimality conditions for the problem of minimization of half-products.  相似文献   

16.
The optimal value of a polynomial optimization over a compact semi-algebraic set can be approximated as closely as desired by solving a hierarchy of semidefinite programs and the convergence is finite generically under the mild assumption that a quadratic module generated by the constraints is Archimedean. We consider a class of polynomial optimization problems with non-compact semi-algebraic feasible sets, for which an associated quadratic module, that is generated in terms of both the objective function and the constraints, is Archimedean. For such problems, we show that the corresponding hierarchy converges and the convergence is finite generically. Moreover, we prove that the Archimedean condition (as well as a sufficient coercivity condition) can be checked numerically by solving a similar hierarchy of semidefinite programs. In other words, under reasonable assumptions, the now standard hierarchy of semidefinite programming relaxations extends to the non-compact case via a suitable modification.  相似文献   

17.
In this article, we provide optimality conditions for global solutions to cubic minimization problems with box or binary constraints. Our main tool is an extension of the global subdifferential approach, developed by Jeyakumar et al. (J Glob Optim 36:471–481, 2007; Math Program A 110:521–541, 2007). We also derive optimality conditions that characterize global solutions completely in the case where the cubic objective function contains no cross terms. Examples are given to demonstrate that the optimality conditions can effectively be used for identifying global minimizers of certain cubic minimization problems with box or binary constraints.  相似文献   

18.
This paper studies how to solve semi-infinite polynomial programming (SIPP) problems by semidefinite relaxation methods. We first recall two SDP relaxation methods for solving polynomial optimization problems with finitely many constraints. Then we propose an exchange algorithm with SDP relaxations to solve SIPP problems with compact index set. At last, we extend the proposed method to SIPP problems with noncompact index set via homogenization. Numerical results show that the algorithm is efficient in practice.  相似文献   

19.
In this paper, we propose two sets of theoretically filtered bound-factor constraints for constructing reformulation-linearization technique (RLT)-based linear programming (LP) relaxations for solving polynomial programming problems. We establish related theoretical results for convergence to a global optimum for these reduced sized relaxations, and provide insights into their relative sizes and tightness. Extensive computational results are provided to demonstrate the relative effectiveness of the proposed theoretical filtering strategies in comparison to the standard RLT and a prior heuristic filtering technique using problems from the literature as well as randomly generated test cases.  相似文献   

20.
The trust-region problem, which minimizes a nonconvex quadratic function over a ball, is a key subproblem in trust-region methods for solving nonlinear optimization problems. It enjoys many attractive properties such as an exact semi-definite linear programming relaxation (SDP-relaxation) and strong duality. Unfortunately, such properties do not, in general, hold for an extended trust-region problem having extra linear constraints. This paper shows that two useful and powerful features of the classical trust-region problem continue to hold for an extended trust-region problem with linear inequality constraints under a new dimension condition. First, we establish that the class of extended trust-region problems has an exact SDP-relaxation, which holds without the Slater constraint qualification. This is achieved by proving that a system of quadratic and affine functions involved in the model satisfies a range-convexity whenever the dimension condition is fulfilled. Second, we show that the dimension condition together with the Slater condition ensures that a set of combined first and second-order Lagrange multiplier conditions is necessary and sufficient for global optimality of the extended trust-region problem and consequently for strong duality. Through simple examples we also provide an insightful account of our development from SDP-relaxation to strong duality. Finally, we show that the dimension condition is easily satisfied for the extended trust-region model that arises from the reformulation of a robust least squares problem (LSP) as well as a robust second order cone programming model problem (SOCP) as an equivalent semi-definite linear programming problem. This leads us to conclude that, under mild assumptions, solving a robust LSP or SOCP under matrix-norm uncertainty or polyhedral uncertainty is equivalent to solving a semi-definite linear programming problem and so, their solutions can be validated in polynomial time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号