首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ZrC/TiN and ZrC/ZrN multilayers thinner than 350 nm were grown on (100) Si substrates at a temperature of 300 °C by the pulsed laser deposition (PLD) technique using a KrF excimer laser (λ=248 nm, pulse duration τ=25 ns, 8.0 J/cm2 fluence and 40 Hz repetition rate). Cross-sectional transmission electron microscopy, Auger electron spectroscopy depth profiling and simulations of X-ray reflectivity curves indicated that there was intermixing between the deposited layers at the interfaces as well as between the first layer and the substrate. Nanoindentation investigations found hardness values between 35 and 38 GPa for the deposited multilayers. Linear unidirectional sliding wear tests were conducted using a ball-on-plate tribometer under 1 N normal force. Wear tracks were produced in a Hysitron nanoindenter with 1 μm radius diamond tip under a 500 μN load. High-resolution cross-sectional transmission electron microscopy studies of the wear tracks showed that the multilayers withstood these tests without significant damage. The results could be explained by the use of a high laser fluence during deposition that resulted in very dense and strongly adherent nanocrystalline layers.  相似文献   

2.
Nanocomposite thin films formed by gold nanoparticles embedded in a nickel oxide matrix have been synthesized by a new variation of the pulsed laser deposition technique. Two actively synchronized laser sources, a KrF excimer laser at 248 nm and an Nd:YAG laser at 355 nm, were used for the simultaneous ablation of nickel and gold targets in oxygen ambient. The structural, morphological, and electrical properties of the obtained nanocomposite films were investigated in relation to the fluence of the laser irradiating the gold target. The nanocomposite thin films were tested as electrochemical hydrogen sensors. It was found that the addition of the gold nanoparticles increased the sensor sensitivity significantly.  相似文献   

3.
A laser induced etch process is described which uses a pulsed 248 nm KrF excimer laser and Cl2 atmosphere for the fabrication of monolithic continuously curved reliefs in InP substrate. In a bakeable processing chamber with low base pressure a wide range of laser fluences is available for damage-free etching. Especially, by photothermal heating far above the melting point, mirrorlike smooth surfaces are obtained. The etch rate characteristics are correlated to the maximum surface temperature reached during the laser pulse. The etch rate is independent of pressure and gas flux in the ranges 0.1–10 mbar and 20–300 sccm, respectively. It increases, however, with the background substrate temperature. Etch rates of up to 3.6 nm/pulse or 4.3 lm/min are possible at 20 Hz pulse repetition rate without visible surface damage. The process exhibits a smooth increase of the etch rate from 1 to 3 nm/pulse between 200 and 300 mJ/cm2, which could be used for making curved reliefs by optical transmission variations on the projection mask.  相似文献   

4.
Zinc oxide thin films were deposited on soda lime glass substrates by pulsed laser deposition in an oxygen-reactive atmosphere at 20 Pa and a constant substrate temperature at 300 °C. A pulsed KrF excimer laser, operated at 248 nm with pulse duration 10 ns, was used to ablate the ceramic zinc oxide target. The structure, the optical and electrical properties of the as-deposited films were studied in dependence of the laser energy density in the 1.2-2.8 J/cm2 range, with the aid of X-ray Diffraction, Atomic Force Microscope, Transmission Spectroscopy techniques, and the Van der Pauw method, respectively. The results indicated that the structural and optical properties of the zinc oxide films were improved by increasing the laser energy density of the ablating laser. The surface roughness of the zinc oxide film increased with the decrease of laser energy density and both the optical bang gap and the electrical resistivity of the film were significantly affected by the laser energy density.  相似文献   

5.
The surface of flint glass of type F2 is patterned by nanosecond KrF excimer laser ablation. Strong UV absorption provides a comparatively low ablation threshold and precise ablation contours. By using a two-grating interferometer, periodic surface patterns with 330 nm period and 100 nm modulation depth are obtained. This method enables the fabrication of 7 mm×13 mm wide grating areas with perfectly aligned grooves without the need of high-precision sample positioning. By double exposure, crossed gratings with adjustable depths in the two orthogonal directions can be generated.  相似文献   

6.
In this work, we have studied the structure and the morphology of a graphite layer induced on the surface of a polycrystalline thermal grade CVD diamond by focusing a pulsed excimer laser operating at KrF (wavelength 248 nm) and ArF (wavelength 193 nm) mixtures. By micro-Raman and photoluminescence spectroscopies, as well as scanning electron microscopy, we reported the synthesis of a turbostratic t-graphite layer after irradiation with ArF laser. By contrast, irradiating with a KrF laser beam, we obtained a disordered graphite layer with 10 laser shots, while 200 consecutive laser pulses resulted in target ablation.  相似文献   

7.
According to UN estimations there are between 80 and 115 million activated landmines worldwide. These mines, or other unexploded ordnance (UXO), can be triggered accidentally and kill or injure more than 2000 civilians per month. The most common explosive in these mines is trinitrotoluene (TNT). In this paper, the potential of some of the most promising lasers for mine neutralisation is investigated, namely an ArF laser, a KrF excimer laser and a Nd:YAG solid-state laser. We have studied the interaction between laser beams emitting at λ=193 nm, 248 nm and 1060 nm and a bare solid sample of TNT of approximately 15 mg. Using pulsed excimer radiation at λ=193 nm, with an energy density up to 1 J/mm2, ablation of the TNT without any deflagration has been achieved. At λ=248 nm, using the KrF excimer laser with a pulse duration of 30 ns and a repetition rate of 5 Hz, the TNT sample started melting and burning after an irradiation of 10 s. Preliminary results with the Nd:YAG solid-state laser operating in cw emission have shown that the irradiated sample exhibits the desired burning behaviour even after the exposure is stopped. Received: 14 December 2000 / Accepted: 18 December 2000 / Published online: 20 June 2001  相似文献   

8.
The time-dependent intensity profile of pulsed KrF excimer laser radiation reflected from polyimide is determined over a range of laser fluences, from well below to above the ablation threshold. The reflected laser beam is truncated once the incident laser radiation exceeds a threshold fluence, i.e., truncation depends on the energy per unit area and not on the intensity, analogous to results for the ablation threshold and the etch depth per pulse. The threshold fluence for pulse truncation corresponds to the onset of ablation. The results indicate that the truncation is not due to laser plasma interactions at these fluences. A general mechanism is discussed involving a time dependent index of refraction.  相似文献   

9.
We have investigated the optical properties of silicon pillars formed by cumulative nanosecond pulsed excimer laser irradiation of single-crystal silicon in vacuum created under different repetition rates. The changes in optical characteristics of silicon pillar were systematically determined and compared as the number of KrF laser shots was increased from 1 to 15,000.The results show that silicon pillar PL curves exhibit a blue band around 430 nm and an ultraviolet band peaking at 370 nm with the vanishing of the green emission at 530 nm. A correlation between the intensity of the blue PL band and the intensity of the Si-O absorption bands has been exploited to explain such emission, whereas, the origin of the ultraviolet band may be attributed to different types of defects in silicon oxide.  相似文献   

10.
We report the first successful deposition of triacetate-pullulan polysaccharide thin films by matrix assisted pulsed laser evaporation. We used a KrF* excimer laser source (λ = 248 nm, τ ≈ 20 ns) operated at a repetition rate of 10 Hz. We demonstrated by FTIR that our thin films are composed of triacetate-pullulan maintaining its chemical structure and functionality. The dependence on incident laser fluence of the induced surface morphology is analysed.  相似文献   

11.
Thin films of molybdenum oxide were deposited in vacuum by pulsed laser ablation using a xenon fluoride (351 nm) and a krypton fluoride (248 nm) excimer lasers. The films were deposited on unheated substrates and were post-annealed in air in the temperature range 300–500°C. The structural, morphological, chemical, and optical properties of the films were studied. As-deposited films were found to be dark. The transparency of the films was improved with annealing in air. The films were polycrystalline with diffraction peaks that belong to the orthorhombic phase of MoO3. The surface morphology of the films showed a layered structure. Both the grain size and surface roughness increased with annealing temperature. The stoichiometry of the films improved upon annealing in air, with the best stoichiometry of MoO2.95 obtained for films deposited by the XeF laser and annealed at 400°C. Similarly, the best transparency, with a transmittance exceeding 80%, was obtained with the films annealed in the temperature range 400–450°C.  相似文献   

12.
Nitrogen-doped titanium oxide thin films covered by gold metal nanoparticles were grown on (001) SiO2 quartz substrates by pulsed laser deposition. A KrF* excimer laser source (λ = 248 nm, τ FWHM ≤ 25 ns, ν = 10 Hz) was used for the irradiation of TiO2 and gold metal targets. The experiments were performed in controlled reactive oxygen or nitrogen atmosphere. The layers were grown for photocatalytic applications. Evaluation of photocatalytic activity was performed by photodegradation of methyl orange under near-UV light irradiation. Our results show that nitrogen doping and addition of gold nanoparticles have complementary effects, photoactivity being significantly improved as compared to that of pure titanium oxide.  相似文献   

13.
成序三  王润文 《光学学报》1992,12(6):11-515
本文报道—台自制的光学投影亚微米量级微细加工用的KrF准分子激光振荡-放大系统,并对其设计和运转性能加以讨论.该系统在200Hz重复率运转时其谱线漂移小于5×10~(-4)nm,谱线宽度为2.3×10~(-8)nm,平均功率达24.4W.  相似文献   

14.
Here, we report the fabrication of diamond-like carbon (DLC) thin films using pulsed laser deposition (PLD). PLD is a well-established technique for deposition of high-quality DLC thin films. Carbon tape target was ablated using a KrF (248 nm, 25 ns, 20 Hz) excimer laser to deposit DLC films on soap-coated substrates. A laser fluence between 8.5 and 14 J/cm2 and a target to substrate distance of 10 cm was used. These films were then released from substrates to obtain freestanding DLC thin foils. Foil thicknesses from 20 to 200 nm were deposited using this technique to obtain freestanding targets of up to 1-inch square area. Typically, 100-nm-thick freestanding DLC films were characterized using different techniques such as AFM, XPS, and nano-indentation. AFM was used to obtain the film surface roughness of 9 nm rms of the released film. XPS was utilized to obtain 74 % sp2, 23 % sp3, and 3 % C–O bond components. Nano-indentation was used to characterize the film hardness of 10 GPa and Young’s modulus of 110 GPa. Damage threshold properties of the DLC foils were studied (1,064 nm, 6 ns) and found to be 7 × 1010 W/cm2 peak intensity for our best ultrathin DLC foils.  相似文献   

15.
Boron carbon nitride (BCN) shows promise as a field emitter material because of its mechanical hardness, chemical inertness, and low electron affinity. This study investigated the modification of a BCN film with an amorphous area using KrF excimer laser (wavelength: 248 nm, photon energy: 5.0 eV) annealing without substrate heating. This achieved significant variation in characteristics, such as an increase in bandgap energy and decrease in electron affinity. Laser annealing reduced electron affinity from 0.7 to 0.3 eV. The results indicate that the modification of the BCN film by KrF excimer laser annealing achieves characteristics similar to hexagonal BN (h-BN) film without losing the desirable properties of the BCN film, such as physical stability.  相似文献   

16.
Zinc oxide nanorods with germanium doping were prepared by ion implantation and annealing treatment method, the microstructural and optical properties of which were studied by means of the X-ray diffraction, photoluminescence, and transmission electron microscopy measurements. The pristine sample exhibited a remarkable ultraviolet emission owing to the band edge emission from the zinc oxide matrix, indicated a good crystalline quality. Three emission peaks appeared after germanium ions were doped into zinc oxide nanorods. The 513?nm photoluminescence peak was ascribed to the transition between the vacancy defect in zinc oxide matrix. Photoluminescence peaks located at 548 and 778?nm were ascribed to germanium ions luminescence center in zinc germanate grain and germanium monoxide luminescence center. The light emission tuning was obtained by germanium doping and annealing treatment, which may help the development of the practical optoelectronic devices based on zinc oxide nanomaterials.  相似文献   

17.
This paper demonstrates the use of a zinc oxide (ZnO) thin film in a 1-μm ring laser cavity as a saturable absorber to successfully generate Q-switching pulses. The tunability of the laser pulses is achieved by integrating a tunable bandpass filter (TBPF) in an ytterbium-doped laser cavity that results in 9.4 nm of tuning range, which wavelength is from 1040.70 nm to 1050.1 nm. The peak energy in the pulse which is 1.47 nJ was measured together with a minimum pulse width of 2.4 μs. In addition, the repetition rate increases from 25.77 to 45.94 kHz as the pump power level being increased from 103.1 to 175.1 mW. The results obtained in this experiment demonstrated consistent results and stable throughout the experiment. Therefore, ZnO thin film is considered as a good candidate in 1-μm pulsed laser applications.  相似文献   

18.
Pristine ZnO thin films have been deposited with zinc acetate [Zn(CH3COO)2], mono-ethanolamine (stabilizer), and isopropanol solutions by sol-gel method. After deposition, pristine ZnO thin films have been irradiated by excimer laser (λ = 248, KrF) source with energy density of 50 mJ/cm2 for 30 sec. The effect of excimer laser annealing on the optical and structural properties of ZnO thin films are investigated by photoluminescence and field emission scanning electron microscope. As-grown ZnO thin films show a huge peak of visible region and a wide full width at half maximum (FWHM) of UV region due to low quality with amorphous ZnO thin films. After KrF excimer laser annealing, ZnO thin films show intense near-band-edge (NBE) emission and weak deep-level emission. The optically improved pristine ZnO thin films have demonstrated that excimer laser annealing is novel treatment process at room temperature.  相似文献   

19.
The pulsed laser processing in liquid media is an attractive alternative to produce room temperature luminescent silicon nanocrystals (Si-ncs). We report on a blue luminescent Si-ncs preparation by using nanosecond pulsed laser (Nd:YAG, KrF excimer) processing in transparent polymer and water. The Si-ncs fabrication is assured by ablation of crystalline silicon target immersed in liquids. During the processing and following aging in liquids, oxide based liquid media, induce shell formation around fresh nanocrystals that provides a natural and stable form of surface passivation. The stable room temperature blue-photoluminescent Si-ncs are prepared with maxima located around ∼440 nm with corresponding optical band gap around ∼2.8 eV (∼430 nm). Due to the reduction of surface defects, the Si-ncs preparation in water, leads to a narrowing of full-width-half-maxima of the photoluminescence spectra.  相似文献   

20.
We report the successful deposition of the porous polymer poly(d,l-lactide) by matrix assisted pulsed laser evaporation (MAPLE) using a KrF* excimer laser (248 nm, τ = 7 ns) operated at 2 Hz repetition rate. The chemical structure of the starting materials was preserved in the resulting thin films. Fluence played a key role in optimizing our depositions of the polymer. We demonstrated MAPLE was able to improve current approaches to grow high quality thin films of poly(d,l-lactide), including a porosity control highly required in targeted drug delivery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号