首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoinduced intramolecular charge-separation and charge-recombination processes in covalently connected C(60)-(spacer)-bis(biphenyl)aniline (C(60)-sp-BBA) and C(60)-((spacer)-bis(biphenyl)aniline)(2) (C(60)-(sp-BBA)(2)) have been studied by time-resolved fluorescence and transient absorption methods. Since a flexible alkylthioacetoamide chain was employed as the spacer, the folded structures in which the BBA moiety approaches the C(60) moiety were obtained as optimized structures by molecular orbital calculations. The observed low fluorescence intensity and the short fluorescence lifetime of the C(60) moiety of these molecular systems indicated that charge separation takes place via the excited singlet state of the C(60) moiety in a quite fast rate and high efficiency even in the nonpolar solvent toluene, which was a quite new observation compared with reported dyads with different spacers. From the absorption bands at 880 and 1000 nm in the nanosecond transient absorption spectra, generations of C(60)(.-)-sp-BBA(.+) and C(60)(.-)-(sp-BBA(.+))(sp-BBA) were confirmed. The rates of charge separation and charge recombination for C(60)-(sp-BBA)(2) are faster than those for C(60)-sp-BBA, suggesting that one of the BBA moieties approaches the C(60) moiety by pushing another BBA moiety because of the flexible spacers.  相似文献   

2.
Photoinduced charge-separation and charge-recombination processes of fullerene[60] dyads covalently connected with phenothiazine and its trimer (PTZ n -C 60, n = 1 and 3) with a short amide linkage were investigated. A time-resolved fluorescence study provided evidence of charge separation via the excited singlet state of a C 60 moiety ( (1)C 60*), which displayed high efficiencies in various solvents; Phi (S) CS (quantum yield of charge separation via (1)C 60*) = 0.59 (toluene) to 0.87 (DMF) for PTZ 1-C 60 and 0.78 (toluene) to 0.91 (DMF) for PTZ 3-C 60. The transient absorption measurement with a 6 ns time resolution in the visible and near-IR regions showed evidence of the generation of radical ion pairs in relatively polar solvents for both dyads. In nonpolar toluene, only PTZ 1- (3)C 60* was observed for PTZ 1-C 60, whereas PTZ 3- (3)C 60* as well as the radical ion pair state in equilibrium were observed for PTZ 3-C 60. The radical ion pairs had relatively long lifetimes: 60 (DMF) to 910 ns ( o-dichlorobenzene) for (PTZ) 1 (*+)-C 60 (*-) and 230 (PhCN) to 380 ns ( o-dichlorobenzene) for (PTZ) 3 (*+)-C 60 (*-). The small reorganization energy (lambda) and the electronic coupling element (| V|) were estimated by the temperature dependence of the charge-recombination rates, i.e., lambda = 0.53 eV and | V| = 1.6 cm (-1) for (PTZ) 3 (*+)-C 60 (*-).  相似文献   

3.
Three porphyrin-fullerene dyads, in which a diyne bridge links C(60) with a beta-position on a tetraarylporphyrin, have been synthesized. The free-base dyad was prepared, as well as the corresponding Zn(II) and Ni(II) materials. These represent the first examples of a new class of conjugatively linked electron donor-acceptor systems in which pi-conjugation extends from the porphyrin ring system directly to the fullerene surface. The processes that occur following photoexcitation of these dyads were examined using fluorescence and transient absorption techniques on the femtosecond, picosecond, and nanosecond time scales. In sharp contrast to the photodynamics associated with singlet excited-state decay of reference tetraphenylporphyrins (ZnTPP, NiTPP, and H(2)TPP), the diyne-linked dyads undergo ultrafast (<10 ps) singlet excited-state deactivation in toluene, tetrahydrofuran (THF), and benzonitrile (PhCN). Transient absorption techniques with the ZnP-C(60) dyad clearly show that in toluene intramolecular energy transfer (EnT) to ultimately generate C(60) triplet excited states is the dominant singlet decay mechanism, while intramolecular electron transfer (ET) dominates in THF and PhCN to give the ZnP(*+)/C(60)(*-) charge-separated radical ion pair (CSRP). Electrochemical studies indicate that there is no significant charge transfer in the ground states of these systems. The lifetime of ZnP(*+)/C(60)(*-) in PhCN was approximately 40 ps, determined by two different types of transient absorption measurement in two different laboratories. Thus, in this system, the ratio of the rates for charge separation (k(CS)) to rates for charge recombination (k(CR)), k(CS)/k(CR), is quite small, approximately 7. The fact that charge separation (CS) rates increase with increasing solvent polarity is consistent with this process occurring in the normal region of the Marcus curve, while the slower charge recombination (CR) rates in less polar solvents indicate that the CR process occurs in the Marcus inverted region. While photoinduced ET occurs on a similar time scale in a related dyad 15 in which a diethynyl bridge connects C(60) to the para position of a meso phenyl moiety of a tetrarylporphyrin, CR occurs much more slowly; i.e., k(CS)/k(CR) approximately equal to 7400. Thus, the position at which the conjugative linker is attached to the porphyrin moiety has a dramatic influence on k(CR) but not on k(CS). On the basis of electron density calculations, we tentatively conclude that unfavorable orbital symmetries inhibit charge recombination in 15 vis a vis the beta-linked dyads.  相似文献   

4.
A covalently linked magnesium porphyrin-fullerene (MgPo-C60) dyad was synthesized and its spectral, electrochemical, molecular orbital, and photophysical properties were investigated and the results were compared to the earlier reported zinc porphyrin-fullerene (ZnPo-C60) dyad. The ab initio B3LYP/3-21G(*) computed geometry and electronic structure of the dyad predicted that the HOMO and LUMO are mainly localized on the MgP and C60 units, respectively. In o-dichlorobenzene containing 0.1 M (n-Bu)4NClO4, the synthesized dyad exhibited six one-electron reversible redox reactions within the potential window of the solvent. The oxidation and reduction potentials of the MgP and C60 units indicate stabilization of the charge-separated state. The emission, monitored by both steady-state and time-resolved techniques, revealed efficient quenching of the singlet excited state of the MgP and C60 units. The quenching pathway of the singlet excited MgP moiety involved energy transfer to the appended C60 moiety, generating the singlet excited C60 moiety, from which subsequent charge-separation occurred. The charge recombination rates, k(CR), evaluated from nanosecond transient absorption studies, were found to be 2-3 orders of magnitude smaller than the charge separation rate, k(CS). In o-dichlorobenzene, the lifetime of the radical ion-pair, MgPo*+-C60*-, was found to be 520 ns which is longer than that of ZnPo*+-C60*- indicating better charge stabilization in MgPo-C60. Additional prolongation of the lifetime of MgPo*+-C60*- was achieved by coordinating nitrogenous axial ligands. The solvent effect in controlling the rates of forward and reverse electron transfer is also investigated.  相似文献   

5.
Photoinduced electron-transfer processes of alkyl-inserted ferrocene-trimethylene-oligothiophene-fullerene (Fc-tm-nT-C60) linked triads and directly linked ferrocene-oligothiophene-fullerene(Fc-nT-C60) triads were investigated using time-resolved fluorescence and transient absorption spectroscopic methods. In nonpolar solvent, the energy-transfer (EN) process occurred from 1nT* to C60 for both triads, without forming the charge-separated (CS) state. In polar solvent, the initial CS state, Fc-tm-nT(*+)-C60(*-), was formed via Fc-tm-nT-1C60 after the EN process from 1nT by photoexcitation of the nT moiety and after direct photoexcitation of the C60 moiety. For Fc-tm-nT(*+)-C60(*-), the positive charge shifted from the nT(*+) moiety to the Fc moiety, producing the final CS state, Fc(*+)-tm-nT-C60(*-), which lasted for 22-330 ns by changing nT from 4T to 12T. For Fc-nT-C60 in polar solvent, the CS state, in which the radical cation is delocalized on both Fc and nT moieties ((Fc-nT)(*+)-C60(*-)), was formed immediately after direct photoexcitation of the nT and C60 moieties. The lifetimes of (Fc-nT)(*+)-C60(*-) were estimated to be 0.1-50 ns by changing nT from 4T to 12T. The longer lifetimes of Fc(*+)-tm-nT-C60(*-) than those of (Fc-nT)(*+)-C60(*-) are caused by the insertion of the trimethylene chain to prevent the pi-conjugation between the Fc and nT moieties. The lifetimes for Fc(*+)-tm-nT-C60(*-) and (Fc-nT)(*+)-C60(*-) are prolonged by changing nT from 4T to 12T. For the charge-recombination process of Fc(*+)-tm-nT-C60(*-), the damping factor was evaluated to be 0.10 A(-1). For (Fc-nT)(*+)-C60(*-), the oxidation potentials of the nT moieties control the electron-transfer process with reflecting stabilization of the radical cations of the nT moieties.  相似文献   

6.
Photoexcitation of a zinc phthalocyanine-perylenediimide (ZnPc-PDI) dyad and a bis(zinc phthalocyanine)-perylenediimide [(ZnPc) 2-PDI] triad results in formation of the triplet excited state of the PDI moiety without the fluorescence emission, whereas addition of Mg (2+) ions to the dyad and triad results in formation of long-lived charge-separated (CS) states (ZnPc (*+)-PDI (*-)/Mg (2+) and (ZnPc) 2 (*+)-PDI (*-)/Mg (2+)) in which PDI (*-) forms a complex with Mg (2+). Formation of the CS states in the presence of Mg (2+) was confirmed by appearance of the absorption bands due to ZnPc (*+) and PDI (*-)/Mg (2+) complex in the time-resolved transient absorption spectra of the dyad and triad. The one-electron reduction potential ( E red) of the PDI moiety in the presence of a metal ion is shifted to a positive direction due to the binding of Mg (2+) to PDI (*-), whereas the one-electron oxidation potential of the ZnPc moiety remains the same. The binding of Mg (2+) to PDI (*-) was confirmed by the ESR spectrum, which is different from that of PDI (*-) without Mg (2+). The energy of the CS state (ZnPc (*+)-PDI (*-)/Mg (2+)) is determined to be 0.79 eV, which becomes lower that of the triplet excited state (ZnPc- (3)PDI*: 1.07 eV). This is the reason why the long-lived CS states were attained in the presence of Mg (2+) instead of the triplet excited state of the PDI moiety.  相似文献   

7.
Spectroscopic, redox, and electron transfer reactions of a self-assembled donor-acceptor dyad formed by axial coordination of magnesium meso-tetraphenylporphyrin (MgTPP) and fulleropyrrolidine appended with an imidazole coordinating ligand (C(60)Im) were investigated. Spectroscopic studies revealed the formation of a 1:1 C(60)Im:MgTPP supramolecular complex, and the anticipated 1:2 complex could not be observed because of the needed large amounts of the axial coordinating ligand. The formation constant, K(1), for the 1:1 complex was found to be (1.5 +/- 0.3) x 10(4) M(-1), suggesting fairly stable complex formation. The geometric and electronic structures of the dyads were probed by ab initio B3LYP/3-21G() methods. The majority of the highest occupied frontier molecular orbital (HOMO) was found to be located on the MgTPP entity, while the lowest unoccupied molecular orbital (LUMO) was on the fullerene entity, suggesting that the charge-separated state of the supramolecular complex is C(60)Im(*-):MgTPP(*+). Redox titrations involving MgTPP and C(60)Im allowed accurate determination of the oxidation and reduction potentials of the donor and acceptor entities in the supramolecular complex. These studies revealed more difficult oxidation, by about 100 mV, for MgTPP in the pentacoordinated C(60)Im:MgTPP compared to pristine MgTPP in o-dichlorobenzene. A total of six one-electron redox processes corresponding to the oxidation and reduction of the zinc porphyrin ring and the reduction of fullerene entities was observed within the accessible potential window of the solvent. The excited state events were monitored by both steady state and time-resolved emission as well as transient absorption techniques. In o-dichlorobenzene, upon coordination of C(60)Im to MgTPP, the main quenching pathway involved electron transfer from the singlet excited MgTPP to the C(60)Im moiety. The rate of forward electron transfer, k(CS), calculated from the picosecond time-resolved emission studies was found to be 1.1 x 10(10) s(-1) with a quantum yield, Phi(CS), of 0.99, indicating fast and efficient charge separation. The rate of charge recombination, k(CR), evaluated from nanosecond transient absorption studies, was found to be 8.3 x 10(7) s(-1). A comparison between k(CS) and k(CR) suggested an excellent opportunity to utilize the charge-separated state for further electron-mediating processes.  相似文献   

8.
Three rotaxanes, with axles with two zinc porphyrins (ZnPs) at both ends penetrating into a necklace pending a C60 moiety, were synthesized with varying interlocked structures and axle lengths. The intra-rotaxane photoinduced electron transfer processes between the spatially positioned C60 and ZnP in rotaxanes were investigated. Charge-separated (CS) states (ZnP*+, C60*-)rotaxane are formed via the excited singlet state of ZnP (1ZnP*) to the C60 moiety in solvents such as benzonitrile, THF, and toluene. The rate constants and quantum yields of charge separation via 1ZnP decrease with axle length, but they are insensitive to solvent polarity. When the axle becomes long, charge separation takes place via the excited triplet state of ZnP (3ZnP*). The lifetime of the CS state increases with axle length from 180 to 650 ns at room temperature. The small activation energies of charge recombination were evaluated by temperature dependence of electron-transfer rate constants, probably reflecting through-space electron transfer in the rotaxane structures.  相似文献   

9.
Molecules of C60 covalently connected with N-ethylcarbazole (EtCz) and triphenylamine (TPA) have been synthesized. Photoinduced electron transfer in C60-EtCz and C60-TPA has been studied in polar and nonpolar solvents using time-resolved transient absorption and fluorescence measurements. From the fluorescence lifetimes, the excited singlet state of the C60 moiety (1C60) of C60-TPA generates predominantly C60*--TPA*+, which decays quickly to the ground state within 6 ns even in polar solvents. In the case of C60-EtCz, on the other hand, about half of the 1C60 moiety generates short-lived C60*--EtCz*+, while the other half of the 1C60 moiety is transferred to the 3C60 moiety via intersystem crossing in dimethylformamide, in which the energy level of C60*--EtCz*+ is lower than that of 3C60. Thus, the charge separation takes place via 3C60 generating C60*--EtCz*+, having a lifetime as long as 300 ns, probably because of the triplet spin character of C60*--EtCz*+. A special property of the EtCz moiety to stabilize the hole in the charge-separated state was revealed.  相似文献   

10.
Photoinduced charge separation of fullerodendrimers with carboxylates at terminal sites (C60 approximately COO-) has been found in aqueous media. Time-resolved transient absorption and fluorescence measurements of the fullerodendrimers demonstrated that charge separation takes place from the terminal carboxylate anion to the central excited singlet state of C60, generating C60*- approximately COO* with high quantum efficiency in aqueous solution. In the presence of viologen dication and a sacrificial donor, the persistent viologen radical cation was generated.  相似文献   

11.
A new group of porphyrin-fullerene dyads with an azobenzene linker was synthesized, and the photochemical and photophysical properties of these materials were investigated using steady-state and time-resolved spectroscopic methods. The electrochemical properties of these compounds were also studied in detail. The synthesis involved oxidative heterocoupling of free base tris-aryl-p-aminophenyl porphyrins with a p-aminophenylacetal, followed by deprotection to give the aldehyde, and finally Prato 1,3-dipolar azomethineylide cycloaddition to C60. The corresponding Zn(II)-porphyrin (ZnP) dyads were made by treating the free base dyads with zinc acetate. The final dyads were characterized by their 1H NMR, mass, and UV-vis spectra. 3He NMR was used to determine if the products are a mixture of cis and trans stereoisomers, or a single isomer. The data are most consistent with the isolation of only a single configurational isomer, assigned to the trans (E) configuration. The ground-state UV-vis spectra are virtually a superimposition of the spectral features of the individual components, indicating there is no interaction of the fullerene (F) and porphyrin (H2P/ZnP) moieties in the ground state. This conclusion is supported by the electrochemical data. The steady-state and time-resolved fluorescence spectra indicate that the porphyrin fluorescence in the dyads is very strongly quenched at room temperature in the three solvents studied: toluene, tetrahydrofuran (THF), and benzonitrile (BzCN). The fluorescence lifetimes of the dyads in all solvents are sharply reduced compared to those of H2P and ZnP standards. In toluene, the lifetimes of the free base dyads are 600-790 ps compared to 10.1 ns for the standard, while in THF and BzCN the dyad lifetimes are less than 100 ps. For the ZnP dyads, the fluorescence lifetimes were 10-170 ps vs 2.1-2.2 ns for the ZnP references. The mechanism of the fluorescence quenching was established using time-resolved transient absorption spectroscopy. In toluene, the quenching process is singlet-singlet energy transfer (k approximately 10(11) s-1) to give C60 singlet excited states which decay with a lifetime of 1.2 ns to give very long-lived C60 triplet states. In THF and BzCN, quenching of porphyrin singlet states occurs at a similar rate, but now by electron transfer, to give charge-separated radical pair (CSRP) states, which show transient absorption spectra very similar to those reported for other H2P-C60 and ZnP-C60 dyad systems. The lifetimes of the CSRP states are in the range 145-435 ns in THF, much shorter than for related systems with amide, alkyne, silyl, and hydrogen-bonded linkers. Thus, both forward and back electron transfer is facilitated by the azobenzene linker. Nonetheless, the charge recombination is 3-4 orders of magnitude slower than charge separation, demonstrating that for these types of donor-acceptor systems back electron transfer is occurring in the Marcus inverted region.  相似文献   

12.
The synthesis and electrochemical and photophysical studies of a series of alkyne-linked zinc-porphyrin-[60]fullerene dyads are described. These dyads represent a new class of fully conjugated donor-acceptor systems. An alkynyl-fullerene synthon was synthesized by a nucleophilic addition reaction, and was then oxidatively coupled with a series of alkynyl tetra-aryl zinc-porphyrins with 1-3 alkyne units. Cyclic and differential pulse voltammetry studies confirmed that the porphyrin and fullerene are electronically coupled and that the degree of electronic interaction decreases with increasing length of the alkyne bridge. In toluene, energy transfer from the excited zinc-porphyrin singlet to the fullerene moiety occurs, affording fullerene triplet quantum yields of greater than 90 %. These dyads exhibit very rapid photoinduced electron transfer in tetrahydrofuran (THF) and benzonitrile (PhCN), which is consistent with normal Marcus behavior. Slower rates for charge recombination in THF versus PhCN clearly indicate that charge-recombination events are occurring in the Marcus inverted region. Exceptionally small attenuation factors (beta) of 0.06+/-0.005 A(-1) demonstrate that the triple bond is an effective mediator of electronic interaction in zinc-porphyrin-alkyne-fullerene molecular wires.  相似文献   

13.
Photoinduced electron-transfer processes of the newly synthesized [60]fullerene-diphenylbenzothiadiazole-triphenylamine (C60-PBTDP-TPA) triad in polar and nonpolar solvents have been studied by using time-resolved transient absorption and fluorescence measurements from picosecond to microsecond regions. By fluorescence lifetime measurements in picosecond time regions, excitation of the charge-transfer transition of the PBTDP-TPA moiety in C60-PBTDP-TPA induces energy transfer to the C60 moiety generating 1C60*-PBTDP-TPA, competitively with charge separation generating C60*--PBTDP-TPA*+. From 1C60*-PBTDP-TPA, which is generated directly and indirectly, charge separation occurs generating C60*--PBTDP-TPA*+ in polar solvents. The C60*--PBTDP-TPA*+ formed via the singlet excited states decayed within a few nanoseconds as revealed by the picosecond transient absorption spectra. In the nanosecond time region, C60*--PBTDP-TPA*+ is produced slowly, probably via 3C60*-PBTDP-TPA. Lifetimes of such slowly generated C60*--PBTDP-TPA*+ were longer than 1 micros, which are the longest values among the C60-bridge-TPA triad systems reported hitherto at room temperature. Roles of the PBTDP-TPA moiety with twisted intermolecular charge-transfer character playing as energy donor and electron donor in addition to the bridge have been disclosed.  相似文献   

14.
Supramolecular ferrocene-porphyrin-fullerene constructs, in which covalently linked ferrocene-porphyrin-crown ether compounds were self-assembled with alkylammonium cation functionalized fullerenes, have been designed to achieve stepwise electron transfer and hole shift to generate long-lived charge separated states. The adopted crown ether-alkylammonium cation binding strategy resulted in stable conjugates as revealed by computational studies performed by the DFT B3LYP/3-21G(*) method in addition to the binding constants obtained from fluorescence quenching studies. The free-energy changes for charge-separation and charge-recombination were varied by the choice of different metal ions in the porphyrin cavity. Free-energy calculations suggested that the light-induced electron-transfer processes from the singlet excited state of porphyrins to be exothermic in all of the investigated supramolecular dyads and triads. Photoinduced charge-separation and charge-recombination processes have been confirmed by the combination of the time-resolved fluorescence and nanosecond transient absorption spectral measurements. In case of the triads, the charge-recombination processes of the radical anion of the fullerene moiety take place in two steps, viz., a direct charge recombination from the porphyrin cation radical and a slower step involving distant charge recombination from the ferrocene cation moiety. The rates of charge recombination for the second route were found to be an order of magnitude slower than the former route, thus fulfilling the condition for charge migration to generate long-lived charge-separated states in supramolecular systems.  相似文献   

15.
The fluorescence kinetics of photosystem I core particles from Chlamydomonas reinhardtii have been measured with picosecond resolution in order to test a previous hypothesis suggesting a charge recombination mechanism for the early electron-transfer steps and the fluorescence kinetics (Müller et al. Biophys. J. 2003, 85, 3899-3922). Performing global target analyses for various kinetic models on the original fluorescence data confirms the "charge recombination" model as the only acceptable one of the models tested while all of the other models can be excluded. The analysis allowed a precise determination of (i) the effective charge separation rate constant from the equilibrated reaction center excited state (438 ns(-1)) confirming our previous assignment based on transient absorption data (Müller et al. Biophys. J. 2003, 85, 3899-3922), (ii) the effective charge recombination rate constant back to the excited state (52 ns(-1)), and (iii) the intrinsic secondary electron-transfer rate constant (80 ns(-1)). The average energy equilibration lifetime core antenna/RC is about 1 ps in the "charge recombination" model, in agreement with previous transient absorption data, vs the 18-20 ps energy transfer lifetime from antenna to RC within "transfer-to-the-trap-limited" models. The apparent charge separation lifetime in the recombination model is about three times faster than in the "transfer-to-the-trap-limited" model. We conclude that the charge separation kinetics is trap-limited in PS I cores devoid of red antenna states such as in C. reinhardtii.  相似文献   

16.
A new approach of probing proximity effects in porphyrin-fullerene dyads by using an axial ligand coordination controlled "tail-on" and "tail-off" binding mechanism is reported. In the newly synthesized porphyrin-fullerene dyads for this purpose, the donor-acceptor proximity is controlled either by temperature variation or by an axial ligand replacement method. In o-dichlorobenzene, 0.1 M (TBA)ClO(4), the synthesized zincporphyrin-fullerene dyads exhibit seven one-electron reversible redox reactions within the accessible potential window of the solvent and the measured electrochemical redox potentials and UV-visible absorption spectra reveal little or no ground-state interactions between the C(60) spheroid and porphyrin pi-system. The proximity effects on the photoinduced charge separation and charge recombination are probed by both steady-state and time-resolved fluorescence techniques. It is observed that in the "tail-off" form the charge-separation efficiency changes to some extent in comparison with the results obtained for the "tail-on" form, suggesting the presence of some through-space interactions between the singlet excited zinc porphyrin and the C(60) moiety in the "tail-off" form. The charge separation rates and efficiencies are evaluated from the fluorescence lifetime studies. The charge separation via the singlet excited states of zinc porphyrin in the studied dyads is also confirmed by the quick rise-decay of the anion radical of the C(60) moiety within 20 ns. Furthermore, a long-lived ion pair with lifetime of about 1000 ns is also observed in the investigated zinc porphyrin-C(60) dyads.  相似文献   

17.
A new amide‐linked phthalocyanine‐fullerene dyad ZnPc‐C60 was synthesized and characterized. The photophysical and electrochemical properties of the ZnPc‐C60 dyad were investigated. The fluorescence spectrum and quantum yield in different solvents showed the occurrence of photoinduced electron transfer (PET) from the singlet excited ZnPc to C60, which was further confirmed by nanosecond transient absorption spectra and cyclic voltammetry data. The free energy change for charge separation (ΔGCS) was estimated to be exothermic with ?0.51 eV, which favored the formation of charge‐separation state. The PET from ZnPc to C60 in ZnPc‐C60 made the dyad exhibit stronger reverse saturable absorption performance compared with C60 and the control sample in the Z‐scan experiments, which indicated the synergistic effect of two active moieties in the dyad.  相似文献   

18.
The photoinduced electron-transfer process of a newly prepared, soluble, pi-conjugated poly[9,9-bis(4-diphenylaminophenyl)-2,7-fluorene] (PDPAF), covalently bridged, C60 triad (C60-PDPAF-C60) is described. The molecular orbital calculations revealed that the majority of the highest occupied molecular orbital (HOMO) is located on the polyfluorene entity, while the lowest unoccupied molecular orbitals (LUMO) are found to be entirely on the C60 entity. The excited-state electron-transfer processes were monitored by both steady-state and time-resolved emission as well as by transient absorption techniques in toluene and benzonitrile. By excitation of the polyfluorene moiety, fluorescence quenching of the singlet excited state of polyfluorene moiety was observed. The nanosecond transient spectra in near-IR region revealed the charge-separation process from the polyfluorene moieties to the C60 moiety through the excited singlet states of polyfluorene. The lifetimes of the charge separated states were evaluated to be 20-50 ns, depending on the solvent polarity.  相似文献   

19.
Silicon phthalocyanine (SiPc) with two axially attached morpholine (MP) units was prepared, and its photophysics was studied by laser flash photolysis, steady state and time-resolved fluorescence methods. Both the fluorescence efficiency and lifetime of SiPc moiety were remarkably quenched, because of the efficient intramolecular photoinduced electron transfer (PET) from morpholine donors to SiPc moiety. The generated charge separation state (CSS), SiPc(?-)-MP(?+), which was observed by transient absorption spectra, showed a lifetime of 4.8 ns. The triplet quantum yield of SiPc unit in the supra-molecule is unexpectedly high, and the predominant spectral signal in microsecond-scale is triplet-triplet (T(1)-T(n)) absorption. This high triplet yield is due to the charge recombination of CSS that generates T(1) in 32% efficiency: SiPc(?-)-MP(?+) → (3)SiPc-MP. The T(1) formation process occurred efficiently because the CSS SiPc(?-)-MP(?+) has a higher energy (1.65 eV) than that of the triplet state (3)SiPc-MP (1.0 eV). Emission from the CSS was also observed: SiPc(?-)-MP(?+) → SiPc-MP + hν'.  相似文献   

20.
The charge-recombination dynamics of two exTTF-C60 dyads (exTTF = 9,10-bis(1,3-dithiol-2-ylidene)-9,10-dihydroanthracene), observed after photoinduced charge separation, are compared in solution and in the solid state. The dyads differ only in the degree of conjugation of the bridge between the donor (exTTF) and the acceptor (C60) moieties. In solution, photoexcitation of the nonconjugated dyad C60-BN-exTTF (1) (BN = 1,1'-binaphthyl) shows slower charge-recombination dynamics compared with the conjugated dyad C60-TVB-exTTF (2) (TVB = bisthienylvinylenebenzene) (lifetimes of 24 and 0.6 micros, respectively), consistent with the expected stronger electronic coupling in the conjugated dyad. However, in solid films, the dynamics are remarkably different, with dyad 2 showing slower recombination dynamics than 1. For dyad 1, recombination dynamics for the solid films are observed to be tenfold faster than in solution, with this acceleration attributed to enhanced electronic coupling between the geminate radical pair in the solid film. In contrast, for dyad 2, the recombination dynamics in the solid film exhibit a lifetime of 7 micros, tenfold slower than that observed for this dyad in solution. These slow recombination dynamics are assigned to the dissociation of the initially formed geminate radical pair to free carriers. Subsequent trapping of the free carriers at film defects results in the observed slow recombination dynamics. It is thus apparent that consideration of solution-phase recombination data is of only limited value in predicting the solid-film behaviour. These results are discussed with reference to the development of organic solar cells based upon molecular donor-acceptor structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号