首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对不同链长的2-烷基-苯并咪唑衍生物(BzCn,烷基链长从C5到C15)在硝酸银亚相上的成膜行为及形成的LB膜的结构进行了研究.表面压-面积曲线的结果表明,短链(C5~C9)的2-烷基-苯并咪唑可在银离子亚相上形成稳定的单分子膜,而长链(C13和C15)衍生物则形成多层膜.利用LB技术可将上述Langmuir膜转移到固体基板上形成LB膜,其吸收光谱的结果说明了苯并咪唑和银离子配位.利用AFM、XRD及FT-IR等技术研究了烷基链长对LB膜结构的影响.实验结果表明,除了BzC15,其余的衍生物都可形成规整的层状结构.短链衍生物的单层LB膜具有均一、平整的形貌;而对于BzC15,观察到多层结构.  相似文献   

2.
Surface pressure-induced crystallization of poly(epsilon-caprolactone) (PCL) from a metastable region of the surface pressure-area per monomer (Pi-A) isotherm in Langmuir monolayers at the air/water (A/W) interface has been captured in real time by Brewster angle microscopy (BAM). Morphological features of PCL crystals grown in Langmuir films during the compression process exhibit four fully developed faces and two distorted faces. During expansion of the crystallized film, polymer chains slowly detach from the crystalline domains and diffuse back into the monolayer as the crystals "melt". Typical diffusion-controlled morphologies are revealed by BAM during the melting process as the secondary dendrites melt away faster, that is, at a higher surface pressure than the principal axes. Electron diffraction on Langmuir-Schaefer films suggests that the lamellar crystals are oriented with the polymer chain axes perpendicular to the substrate surface, while atomic force microscopy reveals a crystal thickness of approximately 7.6 nm.  相似文献   

3.
The morphology or dispersion control in inorganic/organic hybrid systems is studied, which consist of monodisperse CdSe tetrapods (TPs) with grafted semiconducting block copolymers with excess polymers of the same type. Tetrapod arm‐length and amount of polymer loading are varied in order to find the ideal morphology for hybrid solar cells. Additionally, polymers without anchor groups are mixed with the TPs to study the effect of such anchor groups on the hybrid morphology. A numerical model is developed and Monte Carlo simulations to study the basis of compatibility or dispersibility of TPs in polymer matrices are performed. The simulations show that bare TPs tend to form clusters in the matrix of excess polymers. The clustering is significantly reduced after grafting polymer chains to the TPs, which is confirmed experimentally. Transmission electron microscopy reveals that the block copolymer‐TP mixtures (“hybrids”) show much better film qualities and TP distributions within the films when compared with the homopolymer‐TP mixtures (“blends”), representing massive aggregations and cracks in the films. This grafting‐to approach for the modification of TPs significantly improves the dispersion of the TPs in matrices of “excess” polymers up to the arm length of 100 nm.  相似文献   

4.
The behavior of crystallizable poly(ε-caprolactone) (PCL) and poly(ε-caprolactone)-b-poly(ethylene oxide) (PCL-b-PEO) is studied at the air/water interface prior and after grafting to an amorphous poly(glycerol adipate) (PGA) backbone (PGA-g-PCL, PGA-g-(PCL-b-PEO)). Langmuir isotherms are measured and the structure formation in the monolayers on the water surface is followed by Brewster angle microscopy (BAM) and in Langmuir–Blodgett films after a transfer to silicon substrates by atomic force microscopy (AFM). It is observed that PGA-g-PCL forms significantly smaller crystals on the water surface and has smaller crystallization rate compared to PCL homopolymers of identical molar masses as the grafted chains. In contrast to crystals formed by linear PCL, the crystals formed by grafted PCL in PGA-g-PCL do not melt (readsorb at the water surface) in an expansion cycle on the Langmuir trough. Additionally, increasing the subphase temperature at constant surface area significantly above the melting point of linear PCL in bulk results in the formation of a mesophase, and it does lead to the disappearance of crystals. The isotherms of PGA-g-(PCL-b-PEO) show a transition at the surface pressure of ~10 mN/m. This is related to the fact that PEO chains leave the water surface and submerge into the subphase and/or the crystallization of PCL chains. The monolayer collapse appears in an extended plateau region starting at π values of ~30 mN/m. AFM images of Langmuir–Blodgett films reveal that PCL chains in PGA-g-PCL and PGA-g-(PCL-b-PEO) form lamellar crystals with a disk-shape and interconnected platelets, respectively.  相似文献   

5.
A systematic study of five different, symmetric bent-core liquid crystals in Langmuir thin films at the air/water interface is presented. Both the end chains (siloxane vs hydrocarbon) and the core (more or less amphiphilic) are varied, to allow an exploration of different possible layer structures at the interface. The characterization includes systematic surface pressure isotherms, Brewster angle microscopy, and surface potential measurements. The properties of these layers are strongly dependent on the individual type of molecule: the molecules with amphiphilic end chains lie quite flat on the surface, while the molecules with hydrophobic end chains construct multilayer structures. In both cases, the three-dimensional collapse structure is reversible.  相似文献   

6.
We have formed the cholesterol monolayer and multilayer LB films on the self-assembled monolayers of 2-naphthalenethiol (2-NT) and thiophenol (TP) and studied the electrochemical barrier properties of these composite films using cyclic voltammetry and electrochemical impedance spectroscopy. We have also characterized the cholesterol monolayer film using grazing angle FTIR, scanning tunneling microscopy (STM) and atomic force microscopy (AFM). Cholesterol has a long hydrophobic steroid chain, which makes it a suitable candidate to assemble on the hydrophobic surfaces. We find that the highly hydrophobic surface formed by the self-assembled monolayers (SAM) of 2-NT and TP act as effective platforms for the fabrication of cholesterol monolayer and multilayer films. The STM studies show that the cholesterol monolayer films on 2-NT form striped patterns with a separation of 1.0 nm between them. The area per cholesterol molecule is observed to be 0.64 nm2 with a tilt angle of about 28.96 degrees from the surface normal. The electrochemical studies show a large increase in charge transfer resistance and lowering of interfacial capacitance due to the formation of the LB film of cholesterol. We have compared the behavior of this system with that of cholesterol monolayer and multilayers formed on the self-assembled monolayer of thiophenol.  相似文献   

7.
《Liquid crystals》2001,28(3):437-444
The Langmuir films of two liquid crystal materials, 4-octyl-4'-cyanobiphenyl (8CB) and 4-pentyl-4"-cyano-p-terphenyl (5CT), and of their mixtures have been studied by recording surface pressure-area isotherms and Brewster angle microscopy (BAM) images. The pure liquid crystals revealed very different characters of the surface pressure-area isotherms indicating different organization of the molecules and different molecular interactions in the monolayer at the water-air interface. The surface pressure-area isotherms of Langmuir films formed from 8CB/5CT mixtures give evidence for phase separation of the components over the whole range of molar fractions. Similar conclusions have been drawn on the basis of BAM image analysis.  相似文献   

8.
The Langmuir and Langmuir-Schaefer (LS) films of two coumarin derivatives, 4-octadecyloxylcoumarin (4-CUMC18) and 7-octadecyloxylcoumarin (7-CUMC18), were newly synthesized, and their interfacial assemblies were investigated. Owing to the different substituent position of the long octadecyloxy chain in the coumarin parent, the two compounds showed completely different behaviors in the interfacial assemblies. When they were spread at the air/water interface, 7-CUMC18 formed a monolayer while 4-CUMC18 formed a multilayer film on the water surface. The spreading films on the water surface were transferred onto solid substrates by a Langmuir-Schaefer method, and the transferred films were characterized by UV-vis, Fourier transfer infrared, X-ray diffraction, circular dichroism, and atomic force microscopy spectra. Different packing of the molecules in the multilayer films was observed. While coumarin groups stacked in a face-to-face way in 7-CUMC18 film, they stacked in a head-to-tail manner in 4-CUMC18 film. Furthermore, distinct properties of the multilayer films were observed. It is revealed that a reversible [2+2] photodimerization and photocleavage could be induced in the LS film of 7-CUMC18 under photoirradiation with UV light of 365 and 254 nm, respectively. No photodimerization occurred in the 4-CUMC18 film. However, the film of 4-CUMC18 showed a supramolecular chirality although the compound itself is achiral.  相似文献   

9.
This paper reports the preparation and characterization of pure Langmuir and Langmuir-Blodgett (LB) films of a stilbene derivative containing two alkyl chains, namely 4-dioctadecylamino-4'-nitrostilbene. Mixed films incorporating docosanoic acid and the stilbene derivative are also studied. Brewster angle microscopy (BAM) analysis has revealed the existence of randomly oriented three-dimensional (3D) aggregates, spontaneously formed immediately after the spreading process of the stilbene derivative onto the water surface. These 3D aggregates coexist with a Langmuir film that shows the typical gas, liquid, and solid-like phases in the surface pressure and surface potential vs area per molecule isotherms, indicative of an average preferential orientation of the stilbene compound at the air-water interface, and a gradual molecular arrangement into a defined structure upon compression. A blue shift of 55 nm of the reflection spectrum of the Langmuir film with respect to the spectrum of a chloroform solution of the nitrostilbene indicates that two-dimensional (2D) H-aggregates are formed at the air-water interface. The monolayers are transferred undisturbed onto solid substrates with atomic force microscopy (AFM) revealing that the one layer LB films are constituted by a monolayer of the stilbene derivative together with some 3D aggregates. When the nitrostilbene compound is blended with docosanoic acid, the 3D aggregation is avoided in the Langmuir and Langmuir-Blodgett films, but does not limit the formation of 2D H-aggregates, desirable for second-order nonlinear optical response in the blue domain. The AFM images of the mixed LB films show that they are formed by a docosanoic acid monolayer and, on the top of it, a bilayer of the stilbene derivative.  相似文献   

10.
Fabrication of Langmuir films at the air-water interface of four linear-dendritic block copolymers (LDBCs) is described. The LDBCs are composed of a linear hydrophilic chain of poly(ethylene glycol) (PEG) and the first four generations of hydrophobic aliphatic polyester dendrons functionalized at the periphery with cyanoazobenzene chromophores. Langmuir films of the LDBCs, coded as PEG-AZOn (n indicates the number of cyanoazobenzene units at the periphery of the dendritic block), have been characterized by a combination of surface pressure versus area per molecule isotherms, UV-vis reflection spectroscopy and Brewster angle microscopy. The observed PEG-AZOn Langmuir film behavior depends strongly on the hydrophilic/hydrophobic ratio. A typical transition, related to PEG chains desorption from the air-water interface into the water subphase is observed for all the LDBCs, except for PEG-AZO16. In addition, PEG-AZO2 and PEG-AZO4 show a second transition whose nature has been studied in detail. Azobenzene chromophore interactions have been shown to be relevant in the organization of PEG-AZOn (n=4, 8 and 16) Langmuir films. Moreover, for PEG-AZO16 the orientation of the azobenzene units has been determined, revealing the formation of a well organized structure of azobenzene moieties at the air-water interface.  相似文献   

11.
The Langmuir films of two liquid crystal materials, 4-octyl-4'-cyanobiphenyl (8CB) and 4-pentyl-4"-cyano-p-terphenyl (5CT), and of their mixtures have been studied by recording surface pressure-area isotherms and Brewster angle microscopy (BAM) images. The pure liquid crystals revealed very different characters of the surface pressure-area isotherms indicating different organization of the molecules and different molecular interactions in the monolayer at the water-air interface. The surface pressure-area isotherms of Langmuir films formed from 8CB/5CT mixtures give evidence for phase separation of the components over the whole range of molar fractions. Similar conclusions have been drawn on the basis of BAM image analysis.  相似文献   

12.
Control of molecular orientation at the substrate surface is significant to understand the surface science. Langmuir films of bent-core liquid crystals having alkyl chains at both ends were deposited on silicon substrate. Studies were carried out on air–water interface by changing pH of the subphase. On compression, molecules were arranged in stacks at high pH where as uniform monolayer was formed at lower pH. Limiting area increased at low pH, which resulted in the formation of monolayer after attaining a sustainable surface pressure. Langmuir films were transferred to silicon substrate, and atomic force microscopy images showed appropriate height profiles.  相似文献   

13.
用匀胶机通过溶液铸膜方法在硅片和铝箔基板上分别制备具有不同厚度的聚(ε-己内酯)(PCL)薄膜. 通过原子力显微镜(AFM)和偏光衰减全反射傅里叶红外光谱(ATR-FTIR)对薄膜中PCL的结晶形貌、 片晶生长方式及分子链取向进行了研究. AFM结果表明, 在200 nm或更厚的薄膜中, PCL主要以侧立(edge-on)片晶的方式生长; 对于厚度小于200 nm的薄膜, PCL片晶更倾向于以平躺(flat-on)的方式生长. 这种片晶生长方式的改变在硅片和铝箔基板上都表现出同样的倾向. 此外, 在15 nm或更薄的薄膜中, PCL结晶由通常的球晶结构变为树枝状晶体. 偏光ATR-FTIR结果表明, 当膜厚小于200 nm时, 薄膜结晶中PCL分子链沿垂直于基板表面方向取向, 并且膜越薄, 取向程度越高, 与AFM的观测结果一致.  相似文献   

14.
Pyramidic mesogens forming thermotropic liquid crystal bulk phases were spread in an air-water interface. Pressure surface measurements and polarizing microscopy on the Langmuir films were used to characterize the various states of these pyramidic-like molecules. For two compounds bearing short lateral aliphatic chains, the surface pressure isotherms exhibit a large plateau region corresponding to a metastable monolayer in which the molecules may adopt an 'edge-on' arrangement. The coexistence of multilayered, anisotropic, slowly growing domains with the monolayer in the plateau region has been observed at long time scale. The film area relaxation kinetics at constant surface pressure show the existence of two nucleation mechanisms for the formation of these domains.  相似文献   

15.
"?Langmuir monolayers and LB films of 4-((s)-2-methylbutoxy)phenyl-(4'-(10-undecen-1-oyloxy)phenyl) methylenimine (MPUOPM) were investigated by ultraviolet-visible, polarized infrared spectroscopy. ?-A isotherms showed well-defined Langmuir monolayers were formed at an air/water interface for the MPUOPM and their mixture with SA. An inflection point at 13 mN/m appeared on the isotherm, which was due to the transition from the monolayer to multilayer. The polarized IR spectra of LB films of MPUOPM had provided new insight into the molecular orientation and structure. In LB films, the tilted angle between the alkyl chain and the normal line of the substrate was 48ffi, the tilted angle between the dipole moment of C=N and the normal line of the substrate was 51ffi. The alkyl chains assumed a trans-zigzag conformation but it included a few gauche conformers. The C=N groups were almost in one plane in the LB films. "  相似文献   

16.
使用匀胶机(spincoater),通过溶液铸膜的方法,在铝箔基板上制备出具有不同厚度的聚3羟基丁酸酯(PHB)薄膜.20℃室温条件下,通过衰减全反射傅立叶红外光谱(ATRFTIR)原位观测了不同厚度薄膜的结晶过程,并通过偏光ATRFTIR对薄膜中PHB分子的取向进行了研究.ATRFTIR原位观测结果显示,PHB在薄膜中的结晶速率以及结晶度均随着薄膜厚度的减小而逐渐降低;同时,偏光ATRFTIR测试结果表明,随膜厚减小,薄膜中结晶部分的PHB分子逐渐倾向于沿垂直于基板表面方向取向,膜越薄,倾向越明显.可以认为,PHB分子与基板间的相互作用以及扩散控制结晶导致了上述现象的产生.  相似文献   

17.
Polyhedral oligomeric silesquioxanes (POSS) with eight polyether substituents were mixed with the liquid crystal (LC) 4-octyloxy-4′-cyanobiphenyl and spread at the air/water interface. The surface pressure-area and surface potential-area isotherms were recorded for different weight ratios of both components. The obtained results showed that POSS molecules had beneficial influence on LC monolayer improving its stability and rigidity. Moreover, it was found that some LC–POSS mixtures collapse reversibly and form multilayer films on the top of LC monolayer. On the other hand, interfacial dilatational and shear rheology indicated decrease of elasticity of the films after mixing. Brewster angle microscopy revealed multilayer structure of the condensed film and formation of net-like structures in the expanded film. These films were successfully transferred on solid substrates using the Langmuir–Blodgett technique. The scanning electron microscopy images confirmed the film deposition and formation of networks by POSS–LC mixtures. These findings may be useful in the fabrication of electronic devices based on LCs.  相似文献   

18.
Several lipids of biological interest are able to form monomolecular surfaces with a rich variety of thickness and lateral topography that can be precisely controlled by defined variations of the film composition. Ceramide is one of the simplest sphingolipids, consisting of a sphingosine base N-linked to a fatty acid, and is a membrane mediator for cell-signaling events. In this work, films of ceramides N-acylated with the saturated fatty acids C10, C12, C14, and C16 were studied at the air-aqueous interface. The dipole moment contribution (from surface potential measurements) and the surface topography and thickness (as revealed by Brewster angle microscopy) were measured simultaneously with the surface pressure at different molecular areas. Several surface features were observed depending on the asymmetry between the sphingosine and the N-linked acyl chains. At 21 °C, the C16:0 and C14:0 ceramides showed condensed isotherms and the film topography revealed solid film patches (17.3-15.7 ? thick) that coalesced into a homogeneous surface by further compression. On the other hand, in the more asymmetric C12:0 and C10:0 ceramides, liquid expanded states and liquid expanded-condensed transitions occurred. In the phase coexistence region, the condensed state of these compounds formed flowerlike domains (11.1-13.3 ? thick). C12:0 ceramide domains were larger and more densely branched than those of C10:0 ceramide. Both the film thickness and the surface dipole moment of the condensed state increased with ceramide N-acyl chain length. Bending of the sphingosine chain over the N-linked acyl chain in the more asymmetric ceramides can account for the variation of the surface electrostatics, topography, and thickness of the films with the acyl chain mismatch.  相似文献   

19.
A tetraphenyl porphyrin derivative with two C16 alkyl chains covalently bound to each of the four peripheral phenyl rings through ether linkages formed multilayer clusters or vesicles at the air–water surface. More interestingly, spherical vesicles were also formed when deposited on appropriate solid surfaces, and these vesicles were stable even in dry conditions. Various microscopic images of the cast film deposited on a mica surface confirmed closed‐ended nanotube/nanorod‐type formation with necking and bulging. These narrow tubes are proposed to be intermediates for the formation of vesicles by fission at either side of the bulge. Such vesicular formation is not common when either cast or Langmuir–Blodgett films were deposited on a solid surface.  相似文献   

20.
Thermodynamic analyses of surface pressure-area (Π-A) isotherms and Brewster angle microscopy (BAM) reveal that poly(ε-caprolactone) (PCL) with a weight average molar mass of Mw = 10 kg mol−1 and polydispersity index of Mw/Mn = 1.25 and poly(t-butyl acrylate) (PtBA, Mw = 25.7 kg mol−1; Mw/Mn = 1.07) form compatible blends as Langmuir films below the dynamic collapse transition for PCL at Π = 11 mN m−1. For PCL-rich blends, in situ BAM studies reveal growth of PCL crystals for compression past the PCL collapse transition. PCL crystals grown in the plateau regime of the Π-A isotherm exhibit a dendritic morphology presumably resulting from the rejection of PtBA from the growing PCL crystals and hindered diffusion of PCL from the surrounding monolayer to the crystal growth fronts. The ability to transfer the PCL dendrites as Langmuir–Schaefer films onto silicon substrates spincoated with a polystyrene layer facilitates detailed morphological characterization by optical and atomic force microscopy (AFM). AFM reveals that the dendritic branching occurs along the {100} and {110} sector boundaries and is essentially independent of composition. AFM also reveals that the average thickness of PCL dendrites formed at room temperature (22.5 °C), ∼7–8 nm, is comparable with that of PCL crystals grown from single-component PCL Langmuir films and spincoated thin films. In contrast, for PtBA-rich blend films PCL crystallization is suppressed. These findings establish PCL blends as an ideal system for exploring the interplay between chain diffusion and crystal growth in a two-dimensional confined geometry. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3300–3318, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号