首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The self-assembly of nonionic surfactants in the cylindrical pores of SBA-15 silica with a pore diameter of 8 nm was studied by small-angle neutron scattering (SANS) at different solvent contrasts. The alkyl ethoxylate surfactants C(10)E(5) and C(12)E(5) exhibit strong aggregative adsorption in the pores as indicated by the sigmoidal shape of the adsorption isotherms. The SANS intensity profiles can be represented by a sum of two terms, one accounting for diffuse scattering from surfactant aggregates in the pores and the other for Bragg scattering from the pore lattice of the silica matrix. The Bragg reflections are analyzed with a form factor model in which the radial density profile of the surfactant in the pore is approximated by a two-step function. Diffuse scattering is represented by a Teubner-Strey-type scattering function which indicates a preferred distance between adsorbed surface aggregates in the pores. Our results suggest that adsorption starts with formation of discrete surface aggregates which increase in number and eventually merge to interconnected patches as the plateau value of the adsorption isotherm is approached. A grossly different behavior, viz. formation of micelles as in solution, is found for the maltoside surfactant C(10)G(2), in agreement with the observed weak adsorption of this surfactant in SBA-15.  相似文献   

2.
The freezing mechanism of water contacted with mesoporous silicas with uniform pore shapes, both cylindrical and cagelike, was studied by thermodynamic and structural analyses with differential scanning calorimetry (DSC) and X-ray diffraction (XRD) together with adsorption measurements. In the DSC data extra exothermic peaks were found at around 230 K for water confined in SBA-15, in addition to that due to the freezing of pore water. These peaks are most likely to be ascribed to the freezing of water present over the micropore and/or mesopore outlets of coronas in SBA-15. Freezing of water confined in SBA-16 was systematically analysed by DSC with changing the pore size. The freezing temperature was found to be around 232 K, close to the homogeneous nucleation temperature of bulk water, independent of the pore size when the pore diameter (d) < 7.0 nm. Water confined in the cagelike pores of SBA-16 is probably surrounded by a water layer (boundary water) at the outlets of channels to interconnect the pores and of fine corona-like pores, which is similar to that present at the outlet of cylindrical pores in MCM-41 and of cylindrical channels in SBA-15. The presence of the boundary water would be a key for water in SBA-16 to freeze at the homogeneous nucleation temperature. This phenomenon is similar to those well known for water droplets in oil and water droplets of clouds in the sky. The XRD data showed that the cubic ice I(c) was formed in SBA-16 as previously found in SBA-15 when d < 8.0 nm.  相似文献   

3.
Quasi equilibrated temperature programmed desorption and adsorption (QE-TPDA) of hexane and cyclohexane was applied for characterization of zeolites 5A, ZSM-5, 13X, Y, NaMOR and ordered mesoporous silicas MCM-41, MCM-41/TMB, SBA-15 and HMS. Similar QE-TPDA profiles of hexane and cyclohexane with a single desorption maximum were observed for the wide pore zeolites. No adsorption of cyclohexane for zeolite 5A and a single desorption maximum for ZSM-5 were found, while two-step desorption profiles of hexane were observed for these zeolites. Similar values of the adsorption enthalpy and entropy of hexane and cyclohexane were obtained by fitting the Langmuir model functions for the zeolites X and Y. For NaMOR and ZSM-5 larger differences in these parameters were found. A single desorption peak found at low temperatures in the QE-TPDA profiles of hexane and cyclohexane for the studied silicas was attributed to the multilayered adsorption on their mesopore surface. The adsorption isobars calculated from the thermodesorption profiles were fitted with the BET function. This way values of the specific surface area and the adsorption heat were calculated. Additionally values of the initial heat of adsorption were found by fitting the Henry’s law to the high-temperature sections of the linearized isobars. The largest deviations from the BET and Henry functions and the largest values of the adsorption heats found for SBA-15 indicated the greatest heterogeneity of the adsorption sites on its surface.  相似文献   

4.
Threadlike molecular assemblies are excluded from narrow pores unless attractive interactions with the confining pore walls compensate for the loss of configurational entropy. Here we show that wormlike surfactant micelles can be assembled in the 8 nm tubular nanopores of SBA-15 silica by adjusting the surfactant-pore-wall interactions. The modulation of the interactions was achieved by coadsorption of a surface modifier that also provides control over the partitioning of wormlike aggregates between the bulk solution and the pore space. We anticipate that the concept of tuning the interactions with the pore wall will be applicable to a wide variety of self-assembling molecules and pores.  相似文献   

5.
有机胺修饰具有较大孔径介孔材料的二氧化碳吸附性能   总被引:2,自引:0,他引:2  
以非离子表面活性剂P123为模板剂,正硅酸甲酯为硅源,通过加入不同的扩孔剂制得具有较大孔径的SBA-15类介孔材料,并采用粉末X射线衍射(XRD)、低温氮气吸附-脱附、扫描电镜(SEM)、傅里叶变换红外(FTIR)光谱等手段对所得样品进行了表征.加入扩孔剂可以明显增大介孔材料的孔容和孔径,而异辛烷为扩孔剂的扩孔效果明显优于四氯化碳.经四乙烯五胺(TEPA)镀饰后,这些样品均表现出良好的CO2吸附性能.其中对于除去模板剂后再镀胺的样品,其CO2吸附能力与介孔材料孔道结构关系不大,而对于未除模板剂的原粉镀胺样品,CO2吸附能力则随孔道的变大而增强.此外,通过吸附等温线和CO2-程序升温脱附(TPD)手段比较了温度和压力对CO2吸附的影响,发现在较高温度下吸附时CO2的吸附能力随压力的变化存在显著差别,因而在这类TEPA修饰的介孔材料上可通过变压吸附的途径来实现对环境气流中CO2的吸附和分离.  相似文献   

6.
Small-angle neutron scattering (SANS), contrast-matching SANS, and nitrogen adsorption have been utilized to investigate the confined ionic liquid (IL) [bmim][PF(6)] phase in ordered mesoporous silica MCM-41 and SBA-15. The results suggest that the pores of SBA-15 are completely filled with IL whereas a small fraction of the pore volume, the pore "core", of MCM-41 is empty. The contrast-matching SANS measurements confirm the enhanced solubility of water in IL. In addition, they provide strong evidence that water does not enter the empty pore core of MCM-41, possibly because of the preferred orientation of the IL molecules in the adsorbed layer.  相似文献   

7.
Large-pore SBA-15 silicas were synthesized using poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer Pluronic P123 as a template and hexane as a micelle expander. The reaction was initially carried out at 15 degrees C, followed by the heating of the synthesis gel at temperatures from 40 to 130 degrees C. Small-angle X-ray scattering data indicate that highly ordered two-dimensional hexagonal material (SBA-15 structure) formed at 15 degrees C and was preserved even after 5 days of heating at 130 degrees C. The unit-cell parameter for as-synthesized SBA-15 silicas was about 16.5 nm and increased only slightly after the heat treatment, whereas the unit-cell parameter after calcination was appreciably larger (16 vs 14 nm) for materials that were subjected to the thermal treatment. The pore size distribution of SBA-15 formed at 15 degrees C was narrow and centered at approximately 9.5 nm, which is close to the upper limit of pore diameters typically reported for SBA-15. The presence of constrictions in the pores of this material was evident. The heat treatment led to the elimination of the constrictions and to the pore diameter increase to 15 nm or more, tailored by the selection of appropriate treatment temperature and time. The pore size increase was the fastest during the first day of treatment, but it continued for at least 5 days. The pore size distribution broadened as the time of the treatment increased beyond 1 day. The pore size increase appears to be primarily related to the decrease in the degree of shrinkage during the calcination (removal of the template) and the decrease in the pore wall thickness.  相似文献   

8.
合成了一系列具有不同孔结构与性质的有序介孔二氧化硅材料SBA-15、MCM-41、SBA-16、KIT-6, 同时通过改变水热温度制备了不同孔径大小的SBA-15, 并利用小角X射线散射、透射电镜、扫描电镜和氮气吸附-脱附等手段, 对其介孔结构进行了表征. 以正丁醛为探针分子, 考察了其对有机醛的吸附, 并与Y-沸石的吸附性能做了对比. 结果表明, 材料的介孔比表面积与其对正丁醛的吸附量成正比, 吸附等温线符合Langmuir 模型, 属于单层吸附, 具有最大介孔比表面积的MCM-41对正丁醛的吸附量最大(484 mg·g-1). 最后将SBA-15添加到卷烟滤嘴中, 实验结果表明, SBA-15能显著降低卷烟烟气中巴豆醛的释放量.  相似文献   

9.
The present work provides the first study of ordered mesoporous materials SBA-15 coated with microporous zeolites ZSM-5 using molecular simulations. Several model structures with characteristics such as periodic arrangement of mesopores, randomly arranged micropores, surface hydroxyls and bulk deformations of SBA-15 were used. Cartesian coordinates of ZSM-5 unit lattice were obtained from the literature and the 100 face of H-ZSM-5 unit cell was then placed on the surface of SBA-15 and the entire structure was equilibrated to obtain final configuration. The resulting structure was characterized using simulated small angle and wide angle X-ray diffraction, Connolly surface area (to compare BET area), accessible pore volume for nitrogen molecules (to compare with t-plot volume of micro and mesopores) and methane adsorption at 303 K. The orientation of ZSM-5 on the SBA-15 had no effect on the surface area, pore volume or adsorption capacity. In order to find out if the addition of microporous ZSM-5 should increase the total methane adsorption capacity due to addition of micropores, we studied adsorption on bare and coated SBA-15. However, total adsorption capacity was found to decrease, while the number of methane molecules adsorbed per unit cell of the SBA-15 structure increased. An existing experimental method (J. Am. Chem. Soc., 2004, 126, 14324) of the synthesizing hybrid ZSM-5/SBA-15 structure was studied using accessible micropore volume (by t-plot). It was found that the procedure made all the micropores inaccessible. A modification of the method or use of other host materials is suggested to use the benefits of narrow micropore distribution in ZSM-5.  相似文献   

10.
合成了一系列具有不同孔结构与性质的有序介孔二氧化硅材料SBA-15、MCM-41、SBA-16、KIT-6,同时通过改变水热温度制备了不同孔径大小的SBA-15,并利用小角X射线散射、透射电镜、扫描电镜和氮气吸附-脱附等手段,对其介孔结构进行了表征.以正丁醛为探针分子,考察了其对有机醛的吸附,并与Y-沸石的吸附性能做了对比.结果表明,材料的介孔比表面积与其对正丁醛的吸附量成正比,吸附等温线符合Langmuir模型,属于单层吸附,具有最大介孔比表面积的MCM-41对正丁醛的吸附量最大(484 mg·g-1).最后将SBA-15添加到卷烟滤嘴中,实验结果表明,SBA-15能显著降低卷烟烟气中巴豆醛的释放量.  相似文献   

11.
We performed systematic adsorption studies using self-ordered nanoporous anodic aluminum oxide (AAO) in an extended range of mean pore diameters and with different pore topologies. These matrices were characterized by straight cylindrical pores having a narrow pore size distribution and no interconnections. Pronounced hysteresis loops between adsorption and desorption cycles were observed even in the case of pores closed at one end. These results are in contrast with macroscopic theoretical models and detailed numerical simulations of the adsorption in a single pore. Extensive measurements involving adsorption isotherms, reversal curves, and subloops carried out in closed-bottom pores suggest that the pores do not desorb independently from one another.  相似文献   

12.
We present a novel quenched solid density functional theory (QSDFT) model of adsorption on heterogeneous surfaces and porous solids, which accounts for the effects of surface roughness and microporosity. Within QSDFT, solid atoms are considered as quenched component(s) of the solid-fluid system with given density distribution(s). Solid-fluid intermolecular interactions are split into hard-sphere repulsive and mean-field attractive parts. The former are treated with the multicomponent fundamental measure density functional. Capabilities of QSDFT are demonstrated by drawing on the example of adsorption on amorphous silica materials. We show that, using established intermolecular potentials and a realistic model for silica surfaces, QSDFT quantitatively describes adsorption/desorption isotherms of Ar and Kr on reference MCM-41, SBA-15, and LiChrosphere materials in a wide range of relative pressures. QSDFT offers a systematic approach to the practical problems of characterization of microporous, mesoporous, and amorphous silica materials, including an assessment of microporosity, surface roughness, and adsorption deformation. Predictions for the pore diameter and the extent of pore surface roughness in MCM-41 and SBA-15 materials are in very good agreement with recent X-ray diffraction studies.  相似文献   

13.
The dynamic adsorption/desorption behavior of volatile organic compounds (VOCs) such as toluene (C7H8) and benzene (C6H6) was evaluated for three kinds of mesoporous silicas of SBA-15, all having almost the same mesopore size of ca. 5.7 nm, and a MCM-41 silica with a smaller pore size of 2.1 nm using a continuous three-step test. The fiberlike SBA-15 silica exhibited exceptionally good breakthrough behavior, a higher VOC capacity, and easier desorption. The fiberlike silica was composed through the catenation of rodlike particles. The rodlike silicas, by comparison, were proven to be less useful in dynamic adsorption processes because of lower dynamic VOC capacities despite having comparative porous parameters with the fiberlike silica. The large dynamic VOC capacity of the fiberlike silica was attributed to the presence of a bimodal pore system consisting of longer, one-dimensional mesopore channels connected by complementary micropores.  相似文献   

14.
Plugged hexagonal templated silica (PHTS) materials are synthesized using a high TEOS/EO(20)PO(70)EO(20) ratio in the SBA-15 synthesis. This generates internal microporous nanocapsules or plugs in part of the channels, which could be inferred from the two-step desorption branch. These materials exhibit a tunable amount of open and plugged pores and a very high micropore volume (up to 0.24 mL/g) and are more stable than the conventional micellar templated structures known so far. In this study the adsorption properties of PHTS are investigated and compared to those of its plug-free analogue SBA-15. For this purpose nitrogen, n-hexane, n-heptane, c-hexane, 3-methylpentane, 1-hexene, and water were adsorbed on SBA-15 and PHTSs with a different ratio of open and plugged mesopores. The adsorption of n-hexane, c-hexane, n-heptane, and 3-methylpentane on SBA-15 and PHTS-A demonstrated that the presence of the plugs had an effect on the uptake of adsorbate in the low relative pressure region, the position of the capillary condensation step, and the total adsorbed amount of adsorbate. The results showed that n-heptane and 3-methylpentane cannot access part of the micropore system of SBA-15 and PHTS-A. Adsorption of c-hexane and n-hexane on PHTS-A indicated that not only the kinetic diameter but also the shape of the molecule is an important factor for being able to be adsorbed into the micropores or past the plugs. Moreover, these two adsorbates were the most efficient in filling up the available pore volume. From the adsorption of n-hexane on PHTSs with a different ratio of open and plugged pores, it was concluded that the size of the plugs differed, which depends on the synthesis conditions. Water adsorption isotherms proved SBA-15 and PHTS-B to be more hydrophobic than PHTS-A. n-Hexane, 1-hexene, and toluene were adsorbed on SBA-15 and the PHTSs to investigate the influence of the polarity of the adsorbate. The isotherms showed higher uptakes for polar adsorbates on more hydrophobic materials and vice versa.  相似文献   

15.
Highly dispersed gold nanoparticles have been incorporated into the pore channels of SBA-15 mesoporous silica through a newly developed strategy assisted by microwave radiation (MR). The sizes of gold are effectively controlled attributed to the rapid and homogeneous nucleation, simultaneous propagation and termination of gold precursor by MR. Diol moieties with high dielectric and dielectric loss constants, and hence a high microwave activation, were firstly introduced to the pore channels of SBA-15 by a simple addition reaction between amino group and glycidiol and subsequently served as the reduction centers for gold nanoparticles. Extraction of the entrapped gold from the nanocomposite resulted in milligram quantities of gold nanoparticles with low dispersity. The successful assembly process of diol groups and formation of gold nanoparticles were monitored and tracked by solid-state NMR and UV-vis measurements. Characterization by small angle X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the incorporation of gold nanoparticles would not breakup the structural integrity and long-range periodicity of SBA-15. The gold nanoparticles had a narrow size distribution with diameters in the size range of 5-10 nm through TEM observation. The average particles size is 7.9 nm via calculation by the Scherrer formula and TEM measurements. Nitrogen adsorption and desorption isotherms gave further evidence that the employed method was efficient and gold nanoparticles were successfully incorporated into the pore channels of SBA-15.  相似文献   

16.
Ordered mesoporous carbons (OMCs) with varying pore sizes were prepared using ordered mesoporous silica SBA-15 as hard templates. The OMCs possess abundant mesopores with narrow pore size distribution, on which the adsorption behavior of bulky molecules of nonylphenol ethoxylate (NPE) were investigated. The isotherms of NPE on OMCs can be fitted by Langmuir adsorption model, evidenced by the adsorption data. The surface area of the pores larger than 1.5 nm is a crucial factor to the adsorption capacity of NPE, whereas the most probable pore diameter of OMCs is crucial to the adsorption rate of NPE. The adsorption temperature has more significant effects on adsorption rate than the adsorption capacity. Theoretical studies show that the adsorption kinetics of NPE on OMCs can be depicted with the pseudo-second-order kinetic model. In addition, thermodynamic parameters of adsorption were evaluated based on the equilibrium constants related to the equilibrium of adsorption at different temperatures.  相似文献   

17.
The adsorption of CO2 on pore-expanded SBA-15 mesostructured silica functionalized with amino groups was studied. The synthesis of conventional SBA-15 was modified to obtain pore-expanded materials, with pore diameters from 11 to 15 nm. Post-synthesis functionalization treatments were carried out by grafting with diethylenetriamine (DT) and by impregnation with tetraethylenepentamine (TEPA) and polyethyleneimine (PEI). The adsorbents were characterized by X-ray diffraction, N2 adsorption–desorption at 77 K, elemental analysis and Transmission Electron Microscopy. CO2 capture was studied by using a volumetric adsorption technique at 45 °C. Consecutive adsorption–desorption experiments were also conducted to check the cyclic behaviour of adsorbents in CO2 capture. An improvement in CO2 adsorption capacity and efficiency of amino groups was found for pore-expanded SBA-15 impregnated materials in comparison with their counterparts prepared from conventional SBA-15 with smaller pore size. PEI and TEPA-based adsorbents reached significant CO2 uptakes at 45 °C and 1 bar (138 and 164 mg CO2/g, respectively), with high amine efficiencies (0.33 and 0.37 mol CO2/mol N), due to the positive effect of the larger pore diameter in the diffusion and accessibility of organic groups. Pore-expanded SBA-15 samples grafted with DT and impregnated with PEI showed a good stability after several adsorption–desorption cycles of pure CO2. PEI-impregnated adsorbent was tested in a fixed bed reactor with a diluted gas mixture containing 15 % CO2, 5 % O2, 80 % Ar and water (45 °C, 1 bar). A noteworthy adsorption capacity of 171 mg CO2/g was obtained in these conditions, which simulate flue gas after the desulphurization step in a thermal power plant.  相似文献   

18.
It is shown that intrinsically stiff chain aggregates of a metallosupramolecular coordination polyelectrolyte (MEPE) can form in the cylindrical nanopores of MCM-41 and SBA-15 silica by self-assembly of its constituents (metal ions and organic ligand). The UV/vis spectra of the resulting MEPE-silica composites exhibit the characteristic metal-to-ligand charge transfer band of the MEPE complex in solution. For the MEPE-silica composite in SBA-15 an iron content of 1.2 wt % was found, corresponding to ca. 10 MEPE chains disposed side by side in the 8 nm wide pores of the SBA-15 matrix. In the case of MCM-41 (pore width < 3 nm), where only one MEPE chain per pore can be accommodated, an iron content of 0.3 wt % was obtained, corresponding to half-filling of the pores. It was also found that MEPE chains spontaneously enter the pores of SBA-15, when a solution of MEPE is exposed to the silica matrix.  相似文献   

19.
Adsorption of C7 hydrocarbons on biporous SBA-15 mesoporous silica   总被引:1,自引:0,他引:1  
In our recent studies (Vinh-Thang, H.; Huang, Q.; Eic, M.; Trong-On, D.; Kaliaguine, S. Langmuir 2005, 21, 2051-2057; Vinh-Thang, H.; Huang, Q.; Eic, M.; Trong-On, D.; Kaliaguine, S. Stud. Surf. Sci. Catal. 2005, in press), a series of synthesized SBA-15 materials were characterized using nitrogen adsorption/desorption isotherms at 77 K and SEM images. In the present paper, four of them (MMS-1-RT, MMS-1-60, MMS-1-80, and MMS-5-80) were further investigated with regard to their equilibrium characteristics using n-heptane and toluene as sorbates by the standard gravimetric technique. SBA-15 materials proved to have a broad pore size distribution within the micropore/small-mesopore range in the walls of their main mesoporous channels. The adsorption capacities for toluene were found to be higher than for n-heptane. The isosteric heats of adsorption, estimated by the Clausius-Clapeyron equation, are also higher for toluene compared to n-heptane. They were found to depend on framework microporosity of the relevant SBA-15 samples. The isosteric heats of adsorption for all sorbates decrease with increased loading and approach the heats of evaporation of the respective sorbate. The adsorption capacities of SBA-15 samples are significantly higher than those of silicalite, i.e., the MFI zeolite silica analogue. In contrast to that, the isosteric heats of adsorption in the mesopore channels of SBA-15 were found to be much smaller. This result also suggests that SBA-15 can potentially be a good candidate for separation of C(7) hydrocarbons.  相似文献   

20.
This work describes adsorption and wetting characterization of hydrophobic ordered mesoporous silicas (OMSs) with the SBA-15 motif. Three synthetic approaches to prepare hydrophobic SBA-15 silicas were explored: grafting with (1) covalently-attached monolayers (CAMs) of C(n)H(2)(n+1)Si(CH(3))(2)N(CH(3))(2), (2) self-assembled monolayers (SAMs) of C(n)H(2)(n+1)Si(OEt)(3), and (3) direct ("one-pot") co-condensation of TEOS with C(n)H(2)(n+1)Si(OEt)(3) in presence of P123 (n=1-18). The materials prepared were characterized by nitrogen adsorption, TEM, and chemical analysis. The surface properties of the materials were assessed by water contact angles (CAs) and by BET C constants. The results showed that, while loadings of the alkyl groups (%C) were comparable, the surface properties and pore ordering of the materials prepared through different methods were quite different. The best quality hydrophobic surfaces were prepared for SBA-15 grafted with CAMs of alkylsilanes. For these materials, the water CAs were above ~120°/100° (adv/rec) and BET C constants were in the range of ~15-25, indicating uniform low-energy surfaces of closely packed alkyl groups on external and internal surfaces of the pores respectively. Moreover, surfaces grafted with the long-chained (C(12)-C(18)) silanes showed super-hydrophobic behavior (CAs~150-180°) and extremely low adhesion for water. The pore uniformity of parental SBA-15 was largely preserved and the pore volume and pore diameter were consistent with the formation of a single layer of alkylsilyl groups inside the pores. Post-synthesis grafting of SBA-15 with SAMs worked not as well as CAMs: the surfaces prepared demonstrated lower water CAs and higher BET C constants, thereby indicating a small amount of accessible polar groups (Si-OH) related to packing constrains for SAMs supported on highly curved surfaces of mesopores. The co-condensation method produced substantially more disordered materials and less hydrophobic surfaces than any of the grafting methods. The surfaces of these materials showed low water CAs and high BET C constants (~100-200) thereby demonstrating a non-uniform surface coverage and presence of unmodified silica. It is concluded that CAMs chemistry is the most efficient approach in preparation of the functionalized OMS materials with uniform surfaces and pores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号