首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 66 毫秒
1.
The chemodynamics of metal complexes with nanoparticulate complexants can differ significantly from that for simple ligands. The spatial confinement of charged sites and binding sites to the nanoparticulate body impacts on the time scales of various steps in the overall complex formation process. The greater the charge carried by the nanoparticle, the longer it takes to set up the counterion distribution equilibrium with the medium. A z+ metal ion (z > 1) in a 1:1 background electrolyte will accumulate in the counterionic atmosphere around negatively charged simple ions, as well as within/around the body of a soft nanoparticle with negative structural charge. The rate of accumulation is often governed by diffusion and proceeds until Boltzmann partition equilibrium between the charged entity and the ions in the medium is attained. The electrostatic accumulation proceeds simultaneously with outer-sphere and inner-sphere complex formation. The rate of the eventual inner-sphere complex formation is generally controlled by the rate constant of dehydration of the metal ion, k(w). For common transition metal ions with moderate to fast dehydration rates, e.g., Cu(2+), Pb(2+), and Cd(2+), it is shown that the ionic equilibration with the medium may be the slower step and thus rate-limiting in their overall complexation with nanoparticles.  相似文献   

2.
Choi KY  Kim DW  Kim CS  Hong CP  Ryu H  Lee YI 《Talanta》1997,44(4):527-534
The formation and dissociation rates of some transition metal(II) and lanthanide(III) complexes of the 1,7,13-triaza-4,10,16-trioxacyclooctadecane N',N',N'-triacetic acid (1) and 1,7,13-triaza-4,10,16-trioxacyclooctadecane-N',N',N'- trimethylacetic acid (2) have been measured by the use of stopped-flow and conventional spectrophotometry. Experimental observations were made at 25.0 +/- 0.1 degrees C and at an ionic strength of 0.10 M KCl. The complexation of Zn(2+) and Cu(2+) ions with 1 and 2 proceeds through the formation of an intermediate complex (MH(3)L(+) *) in which the metal ion is incompletely coordinated. This may then lead to a final product in the rate-determining step. Between pH 4.68 and 5.55, the diprotonated (H(2)L(-)) form is revealed to be a kinetically active species despite its low concentration. The stability constants (log K (MH (3)L (+) *)) and specific base-catalyzed rate constants (k(OH)) of intermediate complexes have been determined from the kinetic data. The dissociation reactions of 1 and 2 complexes of Co(2+), Ni(2+), Zn(2+), Ce(3+), Eu(3+) and Yb(3+) were investigated with Cu(2+) ions as a scavenger in acetate buffer. All complexes exhibit acid-independent and acid-catalyzed contributions. The buffer and Cu(2+) concentration dependence on the dissociation rate has also been investigated. The metal and ligand effects on the dissociation rate of some transition metal(II) and lanthanide(III) complexes are discussed in terms of the ionic radius of the metal ions, the side-pendant arms and the rigidity of the ligands.  相似文献   

3.
The competitive sorption of Cu(II) and Eu(III) ions from aqueous solutions by olive-cake carbon, has been investigated by potentiometry at pH 6, I=0.1 M NaClO4, 25°C and under normal atmospheric conditions. Evaluation of the experimental data supports the formation of inner-sphere surface complexes and results in the calculation of the formation constant of the surface complexes ((=S–O)2Cu), which is found to amount log β Cu=5.3±0.3. Addition of competing Eu(III) ions in the aqueous system leads to replacement of the Cu(II) by the competitor metal ion. Evaluation of the potentiometric data obtained from competition experiments indicates an ion-exchange mechanism. The formation constant of the Eu(III) species sorbed on olive cake carbon is found to be log β Eu=5.1±0.5. Comparison of the complex formation constants of the olive-cake carbon with the corresponding complex formation constants for of olive cake and humic acid with the two metal ions, indicates that the same type of active sites is responsible for the metal ion complexation on the surface of the different types natural organic matter (e.g. olive-cake carbon, olive-cake and humic acid).  相似文献   

4.
The mechanism of chemisorption of aqueous metal ions at surfaces has long been a topical issue in such fields as soil chemistry and bioenvironmental science. Here it is quantitatively demonstrated for the first time that release of water from the inner hydration shell is the rate-limiting step in inner-sphere surface complexation. The reactive intermediate is an outer-sphere complex between metal ion and surface site, with an electrostatically controlled stability defined by Boltzmann statistics. Using tabulated dehydration rate constants for metal ions, the resulting scheme allows for prediction of rates of sorption of aqueous metal ions at any type of complexing surface.  相似文献   

5.
A theoretical discussion is presented to describe the formation and dissociation rate constants for metal ion binding by soft nanoparticulate complexants. The well-known framework of the Eigen mechanism for metal ion complexation by simple ligands in aqueous systems is the starting point. Expressions are derived for the rate constants for the intraparticulate individual outer-sphere and inner-sphere association and dissociation steps for the limiting cases of low and high charge densities. The charge density, binding site density, and size of the nanoparticle play crucial roles. The effects of the electrostatic potential and particle radius on the overall complexation reaction are compared with those for simple ligands. The limitations of the proposed approach for nanoparticulate ligands are discussed, and key issues for future developments are identified.  相似文献   

6.
《Analytical letters》2012,45(7):1224-1241
The combined use of a competing ligand exchange (CLE) method and a diffusive gradient in thin films (DGT) technique in a quasi-labile system provides a better understanding of dynamic metal (Cu and Ni) complexes in the presence of humic substances of different origins. The CLE and DGT techniques provide total labile (dynamic) metal complexes (Cu and Ni) and their dissociation rate constants in environmental systems. DGT was found to estimate lower concentrations of labile metal complexes than CLE. These discrepancies were caused by diffusion controlled metal flux (towards the binding resin gel) in the diffusive gel of DGT. The interactions of Cu and Ni with humic acids are stronger than their interactions with fulvic acid and natural organic matter. Changes in the lability of Ni and Cu complexes (complexed with humic substances of different origins) with the changing analytical detection window indicate that the complexes of these metals were formed with different binding sites with diverse binding energies in the humic substances. The combination of these two techniques was found to be very useful in determining diffusion coefficients of labile metal-humate complexes in quasi-labile systems. The values of diffusion coefficients of labile Ni and Cu complexes determined in this study are in good agreement with limited results from the literature. This finding is novel and can be very useful in further improving our understanding of the metal-humate interactions in natural environments.  相似文献   

7.
A comprehensive theory is presented for the dynamics of metal speciation in monodisperse suspensions of soft spherical particles characterized by a hard core and an ion-permeable shell layer where ligands L are localized. The heterogeneity in the binding site distribution leads to complex formation/dissociation rate constants (denoted as k a (*) and k d (*), respectively) that may substantially differ from their homogeneous solution counterparts (k a and k d). The peculiarities of metal speciation dynamics in soft colloidal ligand dispersions result from the coupling between diffusive transport of free-metal ions M within and around the soft surface layer and the kinetics of ML complex formation/dissociation within the shell component of the particle. The relationship between k a,d (*) and k a,d is derived from the numerical evaluation of the spatial, time-dependent distributions of free and bound metal. For that purpose, the corresponding diffusion equations corrected by the appropriate chemical source term are solved in spherical geometry using a Kuwabara-cell-type representation where the intercellular distance is determined by the volume fraction of soft particles. The numerical study is supported by analytical approaches valid in the short time domain. For dilute dispersions of soft ligand particles, it is shown that the balance between free-metal diffusion within and outside of the shell and the kinetic conversion of M into ML within the particular soft surface layer rapidly establishes a quasi-steady-state regime. For sufficiently long time, chemical equilibrium between the free and bound metal is reached within the reactive particle layer, which corresponds to the true steady-state regime for the system investigated. The analysis reported covers the limiting cases of rigid particles where binding sites are located at the very surface of the particle core (e.g., functionalized latex colloids) and polymeric particles that are devoid of a hard core (e.g., polysaccharide macromolecules, gel particles). For both the transient and quasi-steady-state regimes, the dependence of k a,d (*) on the thickness of the soft surface layer, the radius of the hard core of the particle, and the kinetic rate constants k a,d for homogeneous ligand solutions is thoroughly discussed within the context of dynamic features for colloidal complex systems.  相似文献   

8.
A new aqueous insoluble ionic β-cyclodextrin polymer (PYR) has been synthesized and a potentiometric study of the binary Cu(II)-PYR system is performed to calculate the complexation constants (as logβ in heterogeneous medium). The mathematical processing of the pH-metric data gave the formation constants of Cu(II) complexes and the related species distributions. The model is compatible with the presence of five complex species in the range of pH 2.5–7. Stoichiometry indicates the probable involvement of the alcoholate functionalities of the ligand in the complexation. The capacity of the polymer with respect to metal ions retention is evaluated for both Cu(II) and Cd(II) (chosen as target probes). The possibility to recover the sorbed Cd(II) is also tested by using acidic pH solutions. A complete recovery is obtained and the stability of the polymer is verified over ten steps of retention and desorption. To understand the complexation mechanism involved, two other cyclodextrin-based polymers are synthesized which are characterized by the presence of naphthalic dicarboxylic and carbonate groups as spacers. Their interactions with Cu(II) or Cd(II) are studied. Since the β-cyclodextrin polycarbonate polymer does not have acidic groups on the spacer, it is interesting to compare metal ions retention between this material, which does not present a real cation exchange site, and PYR.  相似文献   

9.
Electrospray ionization-tandem mass spectrometry (ESI-MS/MS) is applied for the investigation of C(2)-ceramide complexes with transition metal ions. Ceramide plays an important role in the regulation of various signaling pathways leading to proliferation, differentiation or apoptotic cell death. The formation and fragmentation of doubly charged cluster ions as well as singly charged cluster ions of C(2)-ceramide with transition metal ions (Mn(2+), Fe(2+), Co(2+) and Ni(2+)) are studied by ESI-MS/MS in the positive mode. Tube lens offset voltage and concentrations of C(2)-ceramide and transition metals are optimized to determine the best conditions for generating doubly charged cluster ions. The fragmentation pathways of metal ion complexes with C(2)-ceramide and the compositions of these complexes are determined by collision induced dissociation (CID). All transition metal ions (Mn(2+), Fe(2+), Co(2+) and Ni(2+) except Cu(2+)) shows similar complexation with C(2) ceramide. The unique complexation behavior of copper(II) is responsible for the different geometry of the complexes and relatively lower affinity of ceramide to copper(II) than those to other transition metals.  相似文献   

10.
The metal complexes of Cu(II), Ni(II) and Co(II) with Schiff bases of 3-(2-hydroxy-3-ethoxybenzylideneamino)-5-methyl isoxazole [HEBMI] and 3-(2-hydroxy-5-nitrobenzylidene amino)-5-methyl isoxazole [HNBMI] which were obtained by the condensation of 3-amino-5-methyl isoxazole with substituted salicylaldehydes have been synthesized. Schiff bases and their complexes have been characterized on the basis of elemental analysis, magnetic moments, molar conductivity, thermal analysis and spectral (IR, UV, NMR and Mass) studies. The spectral data show that these ligands act in a monovalent bidentate fashion, co-ordinating through phenolic oxygen and azomethine nitrogen atoms. Chelates of Co(II), Ni(II) appear to be octahedral and Cu(II) appears to be distorted octahedral. To investigate the relationship between formation constants of binary complexes and antimicrobial activity, the dissociation constants of Schiff bases and stability constants of their binary metal complexes have been determined potentiometrically in aqueous solution at 30+/-1 degrees C and at 0.1 M KNO3 ionic strength and discussed. Antimicrobial activities of the Schiff bases and their complexes were screened. The structure-activity correlation in Schiff bases and their metal(II) complexes are discussed, based on the effect of their stability constants. It is observed that the activity enhances upon complexation and the order of activity is in accordance with stability order of metal ions.  相似文献   

11.
合成了新的大环配体12-十八烷基-1, 4, 7, 10-四氮杂环十三烷-11, 13-二酮(odt), 研究了odt的液膜传输Cu^2+的动力学。结果表明传输过程为串联一级反应,k~1=8.1×10^3h^-1, K~2=5.5×10^-2h^-1。载体odt与Cu^2+生成配合物的反应速率比配合物离解反应速率小, 前者为速率控制步骤。传输过程无阴离子参加, 但受溶液酸度控制, 根据酸度的不同, 可将Cu^2+选择性地由低浓度向高浓度传输, 这与细胞对金属离子的主动传输类似。  相似文献   

12.
Proton-ligand association constants of 1-benzoyl(1,2,4-triazol-3-yl)thiourea (BTTU) and its complex formation constants with some bivalent metal ions Ni(II), Co(II), Mn(II), Zn(II), and Cu(II), have been determined potentiometrically in 50% EtOH–H2O and 0.1 M NaNO3. The complexes formed in solution have a stoichiometry of 1:1 and 1:2 [M:L], where M represents the metal ion and L the BTTU ligand. The corresponding thermodynamic parameters are derived and discussed. The complexes are stabilized by enthalpy changes and the results suggest that complexation is an enthalpy-driven process. The effects of metal ion, ionic radius, electronegativity, and nature of ligand on the formation constants are discussed. The formation constants of the complexes with 3d transition metals follow the order Mn2+ < Co2+ < Ni2+ < Cu2+ > Zn2+. The metal complexes were synthesized and characterized by elemental analyses, conductance, IR, 1H NMR, and magnetic measurements. The low magnetic moment of 0.11 BM for the Cu(II) complex is suggestive of dimerization through Cu–Cu interaction. The concentration distribution diagrams of the complexes were evaluated. The ligands and their metal complexes have been screened in vitro against some bacteria and fungi.  相似文献   

13.
Electrospray ionization mass (ESI-MS) spectrometry was used to investigate the nature of metal complexes of alachlor and their dissociations on activation. Ions of the first row transition metal series were employed to react with alachlor and the products were subjected to collision-induced dissociation (CID) for further structural characterization. The formation of diverse complex ions including doubly charged metal/alachlor complexes; [3L + M]2+ and [4L + M]2+ (L: alachlor and M: transition metal ions) were observed depending on the experimental conditions including the tube lens offset voltage (TLOV) and relative concentrations of alachlor and transition metal ions. It is clear that complexation with transition metal ions alters the reactive site of alachlor, promoting the loss of chlorine over the loss of CH3OH that is the major reaction pathway in uncomplexed system. Direct elimination of chlorine from alachlor molecule was confirmed by the use of MnBr2 instead of MnCl2. These evidences clearly illustrate the catalytic activities of the metal ions through insertion mechanism. The function of transition metal ions in complexation was emphasized comparing the fragmentation patterns with those of protonated molecule. A change in the oxidation state of copper from + 2 to + 1 during the dissociation of metal complex was observed in company with elimination of radicals which is specific for the copper complex ions.  相似文献   

14.
The beta-diketone Hamac = 3-(N-acetylamido)pentane-2,4-dione was characterized by potentiometric, spectrophotometric, and kinetic methods. In water, Hamac is very soluble (2.45 M) and strongly enolized, with [enol]/[ketone] = 2.4 +/- 0.1. The pK(a) of Hamac is 7.01 +/- 0.07, and the rate constants for enolization, k(e), and ketonization, k(k), at 298 K are 0.0172 +/- 0.0004 s(-1) and 0.0074 +/- 0.0015 s(-1), respectively. An X-ray structure analysis of the copper(II) complex Cu(amac)(2).toluene (=C(21)H(28)CuN(2)O(6); monoclinic, C2/c; a = 20.434(6), b = 11.674(4), c = 19.278(6) ?; beta = 100.75(1) degrees; Z = 8; R(w) = 0.0596) was carried out. The bidentate anions amac(-) coordinate the copper via the two diketo oxygen atoms to form a slightly distorted planar CuO(4) coordination core. Rapid-scan stopped-flow spectrophotometry was used to study the kinetics of the reaction of divalent metal ions M(2+) (M = Ni,Co,Cu) with Hamac in buffered aqueous solution at variable pH and I = 0.5 M (NaClO(4)) under pseudo-first-order conditions ([M(2+)](0) > [Hamac](0)) to form the mono complex M(amac)(+). For all three metals the reaction is biphasic. The absorbance/time data can be fitted to the sum of two exponentials, which leads to first-order rate constants k(f) (fast initial step) and k(s) (slower second step). The temperature dependence of k(f) and k(s) was measured. It follows from the kinetic data that (i) the keto tautomer of Hamac, HK, does not react with the metal ions M(2+), (ii) the rate constant k(f) increases linearly with [M(2+)](0) according to k(f) = k(0) + k(2)[M(2+)](0), and (iii) the rate constant k(s) does not depend on [M(2+)](0) and describes the enolization of the unreactive keto tautomer HK. The pH dependence of the second-order rate constant k(2) reveals that both the enol tautomer of Hamac, HE, and the enolate, E(-), react with M(2+) in a second-order reaction to form the species M(amac)(+). At 298 K rate constants k(HE) are 18 +/- 6 (Ni), 180 +/- 350 (Co), and (9 +/- 5) x 10(4) (Cu) M(-1) s(-1) and rate constants k(E) are 924 +/- 6 (Ni), (7.4 +/- 0.6) x 10(4) (Co), and (8.4 +/- 0.2) x 10(8) (Cu) M(-1) s(-1). The acid dissociation of the species M(amac)(+) is triphasic. Very rapid protonation (first step) leads to M(Hamac)(2+), which is followed by dissociation of M(Hamac)(2+) and M(amac)(+), respectively (second step). The liberated enol Hamac ketonizes (third step). The mechanistic implications of the metal dependence of rate constants k(HE), k(E), k(-HE), and k(-E) are discussed.  相似文献   

15.
《Electrophoresis》2017,38(6):930-937
For the safe long‐term storage of high‐level radioactive waste (HLW), detailed information about geo‐chemical behavior of radioactive and toxic metal ions under environmental conditions is important. Natural organic matter (NOM) can play a crucial role in the immobilization or mobilization of these metal ions due to its complexation and colloid formation tendency. In this study, the complexation of europium (as chemical homologue of trivalent actinides such as americium) and uranium (as main component of HLW) by ten humic acids (HA) from different sources and Suwannee NOM river extract has been analyzed. Capillary electrophoresis in combination with inductively coupled plasma mass spectrometry has been used for the evaluation of complex stability constants log β. In order to determine the complex stability constants a conservative single site model was used in this study. In dependence of their source and thus of NOM structure the log β values for the analyzed humic acids are in the range of 6.1–7.0 for Eu(III) and 5.2–6.4 for U(VI) (UO22+), respectively. In contrast to the results for HA the used Suwannee river NOM reveals log β values in the range of nearly two orders of magnitude lower (4.6 for Eu3+ and 4.5 for UO22+) under the geochemical conditions applied in this study.  相似文献   

16.
Investigations of the mobility of radioactive and nonradioactive substances in the environment are important tasks for the development of a future disposal in deep geological formations. Dissolved organic matter (DOM) can play an important role in the mobilization of metal ions due to complexation. In this study, we investigate the complexation behavior of humic acid (HA) as a model substance for DOM and its influence on the migration of europium as homologue for the actinide americium and uranium as the principal component of nuclear fuel. As speciation technique, capillary electrophoresis (CE) was hyphenated with inductively coupled plasma mass spectrometry (ICP-MS). For the study, 0.5 mg·L?1 of the metals and 25 mg·L?1 of (purified Aldrich) HA and an aqueous solution sodium-perchlorate with an ionic strength of 10 mM at pH 5 were used. CE-ICP-MS clearly shows the different speciation of the triple positively charged europium and the double positively charged uranyl cation with HA.  相似文献   

17.
《Electroanalysis》2005,17(21):1977-1984
An improved theoretical approach to Anodic Stripping Voltammetry with a Thin Mercury Film Rotating Disk Electrode for elucidating the nature of the interactions of Pb(II), Cd(II) and Zn(II) with humic substances in model solutions of Laurentian fulvic acid, and of Pb(II), Cd(II), Zn(II) and Cu(II) in freshwaters, is presented. Conditional stability constants of Pb(II), Cd(II) and Zn(II) complexes decreased with the ionic potential (z2/r) and increased with softness of the metal ion, indicating strong affinity of soft, polarizable donor ligands on humic substances for softer metal ions, resulting in an appreciable covalent character in electrostatic bonding between the metals and humic substances.  相似文献   

18.
In a search for environmentally friendly metal chelating ligands for industrial applications, the protonation and complex formation equilibria of [S,S,S]- and [R,S,R]-isomers of N-bis[2-(1,2-dicarboxyethoxy)ethyl] aspartic acid (BCA6) with Mg(II), Ca(II), Mn(II), Fe(III), Cu(II) and Zn(II) ions in aqueous 0.1 M NaCl solution were studied at 25°C by potentiometric titration. The model for complexation and the stability constants of the different complexes were determined for each metal ion using the computer program SUPERQUAD. With all metal ions (M n+), stable ML n?6 complexes dominated complex formation for both isomers. Differences in complexation models were found for binuclear species.  相似文献   

19.
We report a comprehensive formalism for the dynamics of metal speciation across an interphase formed between a complexing soft film layer and an electrolyte solution containing indifferent ions and metal ions that form complexes with charged molecular ligands distributed throughout the film. The analysis integrates the intricate interplay between metal complexation kinetics and diffusive metal transfer from/toward the ligand film, together with the kinetics of metal electrostatic partitioning across the film/solution interphase. This partitioning is determined by the settling dynamics of the interfacial electric double layer (EDL), as governed by time-dependent conduction-diffusion transports of both indifferent and reactive metal ions. The coupling between such chemodynamic and electrodynamic processes is evaluated via derivation of the dielectric permittivity increment for the ligand film/electrolyte interphase that is perturbed upon application of an ac electric field (pulsation ω) between electrodes supporting the films. The dielectric response is obtained from the ω-dependent distributions of all ions across the ligand film, as ruled by coupled Poisson-Nernst-Planck equations amended for a chemical source term involving the intra-film complex formation and dissociation pulsations (ω(a) and ω(d) respectively). Dielectric spectra are discussed for bare and film coated-electrodes over a wide range of field pulsations and Deborah numbers De = ω(a,d)/ω(diff), where ω(diff) is the electric double layer relaxation pulsation. The frequency-dependent dynamic or inert character of the formed metal complexes is then addressed over a time window that ranges from transient to fully relaxed EDL. The shape and magnitude of the dielectric spectra are further shown to reflect the lability of dynamic complexes, i.e. whether the overall speciation process at a given pulsation ω is primarily rate-limited either by complexation kinetics or by ion-transport dynamics. The limits, strengths and extensions of the approach are further discussed within the context of metal speciation dynamics at soft planar and particulate complexing interphases.  相似文献   

20.
Pb(II) binding by SiO(2) nanoparticles in an aqueous dispersion was investigated under conditions where the concentrations of Pb(2+) ions and nanoparticles are of similar magnitude. Conditional stability constants (log K) obtained at different values of pH and ionic strength varied from 4.4 at pH 5.5 and I = 0.1 M to 6.4 at pH 6.5 and I = 0.0015 M. In the range of metal to nanoparticle ratios from 1.6 to 0.3, log K strongly increases, which is shown to be due to heterogeneity in Pb(II) binding. For an ionic strength of 0.1 M the Pb(2+)/SiO(2) nanoparticle system is labile, whereas for lower ionic strengths there is loss of lability with increasing pH and decreasing ionic strength. Theoretical calculations on the basis of Eigen-type complex formation kinetics seem to support the loss of lability. This is related to the nanoparticulate nature of the system, where complexation rate constants become increasingly diffusion controlled. The ion binding heterogeneity and chemodynamics of oxidic nanoparticles clearly need further detailed research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号