首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
大视场、超光谱分辨率、高空间分辨是光谱成像仪的发展方向,谱线弯曲和色畸变的抑制则是二维谱图信息准确提取的前提。提出了一种棱镜-光栅光谱成像结构形式,并采用矢量方法构建了棱镜-光栅组合色散元件的数学模型,优化了分光模块的结构参数,基于此组合色散元件设计了一个具有近直视光路结构的超光谱成像仪光学系统。该系统光谱范围为400~800nm,入射狭缝长为14mm,F数为2.4,其光谱分辨率达0.5nm,调制传递函数(MTF)在探测器奈奎斯特频率68lp/mm处均大于0.7,谱线弯曲和色畸变均小于1μm,低于单个像素的13.5%。  相似文献   

2.
为实现高光谱成像系统小型化、轻量化和高成像质量的要求,并使全工作波段具有更高的光学效率,提出以Féry棱镜组合作为分光元件的Dyson高光谱成像仪系统,系统中引入消色差棱镜组合以减小光谱的非线性色散,使棱镜系统色散的线性度达到较高。结果表明,可见近红外(VNIR)光谱通道的光学调制传递函数(MTF)达到0.9以上,光谱分辨率为4.2~6.8 nm。短波红外(SWIR)光谱通道的MTF达到0.73~0.87,光谱分辨率为6.4~12.5 nm。通过消色差Féry棱镜组合的设计,该光学成像系统两个光谱通道内的相对谱线弯曲均小于0.05%,色畸变小于0.13%。  相似文献   

3.
Offner成像光谱仪在大色散需求下成像质量不足并且易发生光线遮挡,为此设计了一种基于罗兰圆条件的非共面Offner结构光谱仪。分析并推导出了一种非共面Offner结构成像光谱仪的消除像散及彗差同时解决光线遮挡的设计方法。使用该方法设计出光谱范围为350~1000 nm,色散宽度为12.6 mm的成像光谱仪。在奈奎斯特频率(30 lp/mm)下其调制传递函数在全视场、全光谱范围优于0.78,点列图均方根半径优于4μm,同时,系统的谱线弯曲及谱带弯曲均小于1%像元尺寸。最后,将非共面Offner结构成像光谱仪与传统Offner结构进行对比,结果表明,在高光谱分辨率需求下,当入射狭缝较小时,非共面Offner结构光谱仪具有更好的成像质量,并且在谱线弯曲及谱带弯曲的控制上具有优势,可用于小体积高光谱分辨率成像光谱仪器设计。  相似文献   

4.
针对数字可调光源输出能量较低的问题,提出一种改进型Offner凸面光栅光谱辐射定标光源光学系统的设计方法。基于光线追迹原理,理论推导Offner型光谱成像结构狭缝和像散的关系,利用双柱面透镜对Offner型光谱成像系统大狭缝下的残余像散进行补偿。使用所提方法设计了光谱范围为500~800 nm,狭缝长度为0.4 mm的传统Offner光谱成像系统和狭缝长度为8 mm改进型Offner光谱成像系统。结果表明:改进型Offner光谱成像系统具有良好的成像质量,全视场点列图方均根(RMS)半径小于8.1μm;系统沿Y方向RMS半径小于6.7μm,在一个像元尺寸内;谱线弯曲为单像元尺寸6.2%、色畸变为单像元尺寸5.8%,消除了谱线重叠和谱线偏移现象。设计方法对提高遥感仪器的光谱辐射定标精度具有一定的研究意义和工程价值。  相似文献   

5.
基于反/折射球面罗兰圆建模和宽波段Dyson象散校正方法,解释了大相对孔径高光谱分辨率的Dyson光谱成像系统存在的大工作距设计难题。从工作距的角度,比较了已有文献中报道的三种Dyson光谱成像系统改进思路。在大工作距要求下,采取第一种思路,即在传统型Dyson光谱成像系统结构基础上,引入球面弯月透镜和平面-非球面透镜。建立了平面-非球面校正透镜的三阶像差模型,给出了改进型Dyson光谱成像系统。设计结果表明:改进型Dyson光谱成像系统具有12mm工作距,F/1.8相对孔径,在0.38~0.9μm谱段范围内光谱分辨率约为0.45nm,以及接近衍射极限的优良成像性质,MTF在全波段全视场100lp·mm~(-1)线处大于0.7,最大像面均方根值半径小于1.2μm。同时,系统的Smile(谱线弯曲)和Keystone(色畸变)得到了很好的控制,保证了获取光谱数据的一致性。改进型Dyson光谱成像系统具有大相对孔径和高光谱分辨率的特点,而且系统焦平面探测器和系统入射狭缝两者的彼此间隙位置合适,易于装配。解决了传统型Dyson光谱成像系统实际应用中工作距不足的问题,可为大气遥感、农林调查、海洋生物等领域的高光谱成像信息探测提供一个新型的高光谱成像系统,对光谱成像系统的发展具有良好的促进意义。  相似文献   

6.
通过对Offner分光光学系统分析,给出了快速计算初始结构参数公式,根据算得的初始结构参数优化出一套适用于短波红外(1 000~2 500 nm)的分光光学系统,设计的光学系统相对孔径大(F/#2.2)、光谱分辨率高(优于10 nm)和入射狭缝长(12 mm),在整个波长和视场范围内调制传递函数MTF均大于0.5。完成的成像光谱仪整机体积小,重量轻(小于5 kg),仪器测试结果表明,全光谱范围内光谱线性好,光谱标定后波长精度优于4 nm, 通过对不同波段分辨率测试,全波长范围内光谱分辨率与设计相符,动态成像实验表明, 光谱图像清晰并且光谱数据质量佳。  相似文献   

7.
高光谱分辨率紫外Offner成像光谱仪系统设计   总被引:1,自引:0,他引:1  
紫外成像光谱仪是遥感探测仪器的重要组成部分之一。在机载和星载领域,遥感平台正逐步要求光谱仪在实现高分辨率的同时,其设备趋于轻量化和小型化。针对紫外成像光谱仪高光谱分辨率、轻量化、小型化等特点,研究了基于Offner结构的紫外成像光谱系统,设计了一种工作波段为250~400nm、狭缝长40mm、光谱分辨率为0.3nm的高分辨率紫外成像光谱仪,并对设计结果进行了分析与评价。结果表明,这种紫外成像光谱仪在38.5lp/mm处调制传递函数达到0.76以上,实现了接近衍射极限的优良成像质量;谱线弯曲和色畸变在像元尺寸的10%以内。另外,该结构在原Offner结构的基础上大大缩小了系统体积,实现了紫外遥感仪器小型化、轻量化的目的,且易于加工和装调,满足设计指标要求,适合机载和星载遥感应用。  相似文献   

8.
为满足高光谱成像系统高空间分辨率和高光谱分辨率的要求,并应对实际应用中对仪器小型化、轻量化、高光学效率的新需求,研究一种基于利特罗结构的棱镜色散高光谱成像系统,采用离轴两反的利特罗结构形式减小光学系统的体积,同时为平面棱镜提供准直光路,并以宏编程的优化方式,避免系统中光路干涉。结果表明,通过非球面反射镜和双校正透镜的设计,该光学成像系统的谱线弯曲均小于2.1 μm,色畸变小于1.3 μm,控制在18%像元内,在400~1 080 nm可见—近红外(VNIR)工作波段的光学调制传递函数(MTF)均达到0.9以上,光谱分辨率为1.6~5.0 nm,光谱透过率在51.5%以上,系统在整个工作光谱范围都具有较高的透过率和像质。  相似文献   

9.
考虑到机载遥感平台对成像光谱仪小型化、轻量化要求的逐渐提高,在分析了主要几种成像光谱仪特点的基础上,重点阐述了技术成熟度较高的光栅色散和棱镜色散型成像光谱仪,研究了基于Offner中继成像结构的紧凑型成像光谱系统。结合Offner同心光学系统成像特点,在给定系统指标的情况下,设计出了两种在发散和会聚光束中使用色散元件的全球面光谱系统,给出了系统的调制传递函数、点列图以及系统谱线弯曲、色畸变曲线。结果表明,两种结构的Offner成像光谱仪,实现了遥感仪器小型化的目的,具有接近衍射极限的优良成像性质。同时,很好地控制了系统的谱线弯曲和色畸变,保证了获取光谱数据的一致性。  相似文献   

10.
介绍了Offner凸面光栅成像光谱仪和Dyson凹面光栅成像光谱仪两种常用的同心光学系统。Offner凸面光栅成像光谱仪采用全反射的形式,使用光谱范围很宽,加工、装调较为简单,受外界环境影响较小;Dyson凹面光栅成像光谱仪在体积和尺寸上的优势较为明显,易于实现整体结构的小型化。给出了这两种成像光谱仪的具体设计实例,两种光学系统的成像质量均能达到较为理想的结果,其结构畸变均<0005%,在使用光谱范围内,光谱分辨率均能到达3 nm,具有高质量的光学传递函数。最后,给出了配合成像光谱仪使用的多种前置光学系统的结构形式,并讨论了消除系统杂散光的方法及消除光谱级次重叠的方法。  相似文献   

11.
针对平面光栅和棱镜成像光谱仪难以校正谱线弯曲的问题,提出了利用棱镜-光栅(P-G)组合分光元件并结合系统物镜畸变校正谱线弯曲的方法。分别计算了棱镜和光栅产生的谱线弯曲以及P-G组合元件产生的光谱弯曲,分析了棱镜和光栅的谱线弯曲特性,并基于此设计了P-G组合分光元件和消谱线弯曲成像光谱仪结构。通过优化设计得到光学系统的光谱分辨率高于2nm,点列图均方根(RMS)半径小于8μm,系统谱线弯曲和光谱弯曲小于2μm。证明了P-G组合元件结合系统物镜畸变可补偿校正整个工作波段的谱线弯曲和光谱弯曲。最后的设计结果表明,基于P-G分光元件的成像光谱仪系统在满足像质要求的前提下,谱线弯曲小于1/4像元尺寸,满足使用要求。  相似文献   

12.
残留谱线弯曲限制了切尔尼-特纳平面光栅光谱仪在成像光谱仪中的应用.本文不同于传统的基于棱镜的光栅谱线弯曲补偿方法,提出了基于倾斜场镜的补偿方法,即在校正场曲的同时对入射到场镜不同区域,不同波长的狭缝像分别进行谱线弯曲校正,且没有改变系统的其它光学特性.对狭缝大小为7.8mm×0.016mm、光谱范围0.31~0.5μm、光谱分辨率0.4nm、物方焦距70mm、1∶1放大倍率的切尔尼-特纳成像光谱仪进行了优化设计,结果全谱段、全视场MTF0.8,点列图RMS半径小于9μm,相对谱线弯曲小于0.2%,满足设计要求.实际设计表明该方法对于可选用光学玻璃有限,且能量较弱的紫外光学系统是一种可选的优化设计方法.  相似文献   

13.
针对生物特征的多模识别技术,设计了一款用于指纹及手指静脉图像复合采集的光学系统。用于采集指纹和手指静脉图像的光学镜头分别由3片和12片球面透镜构成,工作波长分别为650 nm和850 nm,成像器件分别采用640 pixel×480 pixel CCD和640 pixel×512 pixel非制冷红外探测器。使用Zemax软件对该系统的光学结构进行了设计和优化。像质评价结果表明:指纹图像采集镜头在空间截止频率67 lp/mm处,调制传递函数MTF值大于0.6;手指静脉图像采集镜头在空间截止频率30 lp/mm处,调制传递函数MTF值大于0.8;两镜头各视场弥散斑均方根半径远小于成像器件像元尺寸,接近衍射极限,且成像畸变均小于0.5%。实验证明该系统采集到的图像质量优良,分辨率高。  相似文献   

14.
设计了一种基于液晶可调谐滤光片(Liquid Crystal Tunable Filter,LCTF)的新型多光谱成像光学系统。该光学系统工作谱段为400~720nm,光谱分辨率为10nm,可对216mm×216mm幅面大小的物面成像清晰。根据多光谱成像系统的总体方案,对光学系统分析,确定各光学参数,设计结果表明,成像系统在空间频率91lp/mm处,各个波段处的轴上和轴外调制传递函数均大于0.3,全视场畸变低于0.1%,成像质量良好,可以满足多光谱成像的总体要求。  相似文献   

15.
为适应机载高光谱成像系统的发展需要,设计了一种机载大视场高光谱成像系统。前置望远系统为大视场宽谱段透射式系统,高光谱成像仪为基于Offner次镜的改正型Féry棱镜中继系统。系统设计过程中两次使用Zemax多重组态设计;尝试将Offner次镜的改正型Féry棱镜设计为高光谱成像仪;将Féry棱镜高光谱成像仪集成为高光谱成像系统进行一体化系统分析。该设计在结构和设计方法上均有改进。设计的大视场可见近红外高光谱成像系统视场可达28°,机载载荷高度为5km时,全系统的刈幅宽度为2.493km,地面分辨率可达0.6m。左半视场和右半视场全谱段调制传递函数均大于0.6,最大谱线弯曲和谱带弯曲不到0.2pixel,成像质量接近衍射极限。  相似文献   

16.
基于曲面棱镜的光谱成像技术是近几年该领域研究的热点,但曲面棱镜前后球面的非共轴特性使得曲面棱镜的装调难度远大于传统共轴光学系统.装调误差是影响成像系统最终成像质量的重要因素,目前曲面棱镜高光谱成像仪的公差分配方法大多以系统调制传递函数(MTF)为评价指标,未考虑装调误差对谱线弯曲、色畸变的影响.利用几何光学方法研究了曲...  相似文献   

17.
为了解决传统成像光谱仪难以实现光谱和图像信息实时获取的问题,设计一款可见/近红外宽谱段视频型成像光谱仪系统。系统利用多狭缝分光成像技术,将目标光谱图像进行区域划分,代替传统的推帚型成像光谱仪,实现光谱维的大视场成像。采用低色散光学玻璃和双胶合透镜实现宽谱段光学系统的像差校正。前置望远物镜系统采用复杂的双高斯结构,实现小畸变设计和不同视场狭缝处能量的均匀分布。为了同时获取高空间分辨率的实时视频监控和高光谱分辨率,利用分光棱镜将前置望远物镜的像分为两路,一路直接由高分辨率全色相机接收,另一路进入分光系统由灰度相机接收。采用三块棱镜作为分光元件,通过优化材料组合和实际光线控制,获得了萤石-熔石英-萤石理想棱镜组合,实现了光路同轴性和良好色散线性度。设计结果为光学系统的光谱范围为400~1000 nm,F数为3.5,前置望远物镜奈奎斯特频率处设计调制传递函数(MTF)大于0.5,畸变小于0.1%,像面照度均匀性高于98%。整个系统奈奎斯特频率处设计MTF大于0.44,平均光谱分辨率为10 nm。  相似文献   

18.
本文根据像差理论,开发了一种计算次镜外反射的Offner型自由曲面棱镜光谱仪初始结构的算法。通过光线追迹获得光线在次镜外反射Offner型光谱仪各光学表面传播的公式,该公式可以确定光学元件的结构参数。应用轴外细光束像散理论分析系统产生的像散,并设定合理阈值作为结构算法的判断依据。在Matlab中迭代优化出符合设计要求的初始结构,使用Zemax软件对获得的初始结构进行优化。为验证算法效果,本文设计了光谱范围为380~780 nm,数值孔径为0.15,光谱分辨率为6 nm的自由曲面棱镜光谱仪的初始结构。在Zemax中完成优化后系统可达到设计指标且谱线弯曲和色畸变均优于0.1 pixels。设计结果表明采用本文算法可以快速计算出符合要求的初始结构,大大简化了后续优化的复杂程度。  相似文献   

19.
折射/谐衍射红外双波段成像光谱仪系统研究   总被引:2,自引:0,他引:2       下载免费PDF全文
刘英  孙强  卢振武  曲锋  吴宏圣  李淳 《物理学报》2010,59(10):6980-6987
为了获取足够的目标信息,充分利用中波红外和长波红外的光谱信息,建立了谐衍射中、长波红外超光谱成像系统.利用谐衍射元件独特的色散特性,将谐衍射透镜应用于中、长波红外超光谱成像系统中,使系统在中波红外3.7—4.8 μm和长波红外8—12 μm的2个红外大气窗口内获取数百个光谱图像.设计结果表明,中波红外波段,在18对线/mm处光学系统的调制传递函数(MTF)大于0.55,长波红外波段,在13对线/mm处光学系统的MTF大于0.5,光学系统的衍射环绕能,在中波红外波段30 μm半径范围内大于85%,在长波红外  相似文献   

20.
介绍了一种基于谱线匹配技术的星上光谱定标方法,该定标方法选取大气吸收线作为匹配谱线,采用相关系数法作为匹配结果判定条件标进行光谱定标。为模拟星上定标过程,将谱线匹配技术应用于振动试验后的成像光谱仪,振动试验可以模拟成像光谱仪在升空过程中受到的振动。星上光谱定标包括成像光谱仪分辨率的确定、面阵探测器光谱维和空间维像元中心波长的定标。由定标结果可知,振动试验后光谱仪分辨率为0.40 nm,与振动试验前相比没有发生变化;光谱维像元中心波长向长波偏移0.08 nm(小于一个像元);空间维像元光谱弯曲(光谱smile) 向短波方向弯曲,最大弯曲值为0.96 nm,近似于振动试验前光谱弯曲值。由此验证了谱线匹配技术进行星上光谱定标的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号