首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quantum spin dynamics as a model for quantum computer operation   总被引:1,自引:0,他引:1  
We study effects of the physical realization of quantum computers on their logical operation. Through simulation of physical models of quantum computer hardware, we analyze the difficulties that are encountered in programming physical realizations of quantum computers. Examples of logically identical implementations of the controlled-NOT operation and Grover's database search algorithm are used to demonstrate that the results of a quantum computation are unstable with respect to the physical realization of the quantum computer. We discuss the origin of these instabilities and discuss possibilities to overcome this, for practical purposes, fundamental limitation of quantum computers. Received 5 November 2001 and Received in final form 8 February 2002  相似文献   

2.
We investigate the transition to quantum chaos, induced by static imperfections, for an operating quantum computer that simulates efficiently a dynamical quantum system, the sawtooth map. For the different dynamical regimes of the map, we discuss the quantum chaos border induced by static imperfections by analyzing the statistical properties of the quantum computer eigenvalues. For small imperfection strengths the level spacing statistics is close to the case of quasi-integrable systems while above the border it is described by the random matrix theory. We have found that the border drops exponentially with the number of qubits, both in the ergodic and quasi-integrable dynamical regimes of the map characterized by a complex phase space structure. On the contrary, the regime with integrable map dynamics remains more stable against static imperfections since in this case the border drops only algebraically with the number of qubits. Received 19 June 2002 / Received in final form 30 September 2002 Published online 17 Decembre 2002 RID="a" ID="a"e-mail: dima@irsamc.ups-tlse.fr RID="b" ID="b"UMR 5626 du CNRS  相似文献   

3.
We study the properties of eigenstates of an operating quantum computer which simulates the dynamical evolution in the regime of quantum chaos. Even if the quantum algorithm is polynomial in number of qubits nq, it is shown that the ideal eigenstates become mixed and strongly modified by static imperfections above a certain threshold which drops exponentially with nq. Above this threshold the quantum eigenstate entropy grows linearly with nq but the computation remains reliable during a time scale which is polynomial in the imperfection strength and in nq. Received 7 March 2002/ Received in final form 3 May 2002 Published online 19 July 2002  相似文献   

4.
For a closed bi-partite quantum system partitioned into system proper and environment we interpret the microcanonical and the canonical condition as constraints for the interaction between those two subsystems. In both cases the possible pure-state trajectories are confined to certain regions in Hilbert space. We show that in a properly defined thermodynamical limit almost all states within those accessible regions represent states of some maximum local entropy. For the microcanonical condition this dominant state still depends on the initial state; for the canonical condition it coincides with that defined by Jaynes' principle. It is these states which thermodynamical systems should generically evolve into. Received 13 June 2002 / Received in final form 14 November 2002 Published online 4 February 2003 RID="a" ID="a"e-mail: jochen@theol.physik.uni-stuttgart.de  相似文献   

5.
Magic-angle spinning (MAS) solid state nuclear magnetic resonance (NMR) spectroscopy is shown to be a promising technique for implementing quantum computing. The theory underlying the principles of quantum computing with nuclear spin systems undergoing MAS is formulated in the framework of formalized quantum Floquet theory. The procedures for realizing state labeling, state transformation and coherence selection in Floquet space are given. It suggests that by this method, the largest number of qubits can easily surpass that achievable with other techniques. Unlike other modalities proposed for quantum computing, this method enables one to adjust the dimension of the working state space, meaning the number of qubits can be readily varied. The universality of quantum computing in Floquet space with solid state NMR is discussed and a demonstrative experimental implementation of Grover's search is given. Received 19 April 2001  相似文献   

6.
We propose a quantum transmission based on bi-photons, which are doubly-entangled both in polarisation and phase. This scheme finds a natural application in quantum cryptography, where we show that an eventual eavesdropper is bound to introduce a larger error on the quantum communication than for a single entangled bi-photon communication, when he steels the same information. Received 23 July 2001 / Received in final form 30 November 2001 Published online 24 September 2002  相似文献   

7.
We examine a generic three level mechanism of quantum computation in which all fundamental single and double qubit quantum logic gates are operating under the effect of adiabatically controllable static (radiation free) bias couplings between the states. Under the time evolution imposed by these bias couplings the quantum state cycles between the two degenerate levels in the ground state and the quantum gates are realized by changing Hamiltonian at certain time intervals when the system collapses to a two state subspace. We propose a physical implementation of the mechanism using Aharonov-Bohm persistent-current loops in crossed electric and magnetic fields, with the output of the loop read out by using a quantum Hall effect aided mechanism. Received 26 March 2002 / Received in final form 8 July 2002 Published online 19 November 2002  相似文献   

8.
We give a proof that entanglement purification, even with noisy apparatus, is sufficient to disentangle an eavesdropper (Eve) from the communication channel. Our proof applies to all possible attacks (individual and coherent). Due to the quantum nature of the entanglement purification protocol, it is also possible to use the obtained quantum channel for secure transmission of quantum information. Received 10 August 2001 and Received in final form 26 October 2001  相似文献   

9.
Based on the newly constructed Einstein, Podolsky and Rosen (EPR) entangled state representation we introduce macroscopic classical functions associated with atomic coherent state τ with angular momentum value j. These functions are proportional to the ordinary one-variable Hermite polynomials of order 2j. The corresponding Wigner quasiprobability function for τ in phase space is also derived which turns out to be a two-variable Hermite polynomial H 2j, 2j. In so doing, a new classical-quantum correspondence scheme for angular momentum system is established. Received 7 August 2002 / Received in final form 14 December 2002 Published online 24 April 2003 RID="a" ID="a"Work supported by the National Natural Science Foundation of China under grant 10175057. RID="b" ID="b"e-mail: fhym@sjtu.edu.en  相似文献   

10.
11.
A quantum gravity-gradiometer consists of two spatially separated ensembles of atoms interrogated by pulses of a common laser beam. The laser pulses cause the probability amplitudes of atomic ground-state hyperfine levels to interfere, producing two, motion-sensitive, phase shifts, which allow the measurement of the average acceleration of each ensemble, and, via simple differencing, of the acceleration gradient. Here we propose entangling the quantum states of atoms from the two ensembles prior to the pulse sequence, and show that entanglement encodes their relative acceleration in a single interference phase which can be measured directly, with no need for differencing. Received 6 June 2002 / Received in final form 25 October 2002 Published online 28 January 2003  相似文献   

12.
We show that dissipative classical dynamics converging to a strange attractor can be simulated on a quantum computer. Such quantum computations allow to investigate efficiently the small scale structure of strange attractors, yielding new information inaccessible to classical computers. This opens new possibilities for quantum simulations of various dissipative processes in nature. Received 10 August 2002 Published online 29 October 2002 RID="a" ID="a"e-mail: dima@irsamc.ups-tlse.fr RID="b" ID="b"UMR 5626 du CNRS  相似文献   

13.
In the one-dimensional Anderson model the eigenstates are localized for arbitrarily small amounts of disorder. In contrast, the Aubry-André model with its quasiperiodic potential shows a transition from extended to localized states. The difference between the two models becomes particularly apparent in phase space where Heisenberg's uncertainty relation imposes a finite resolution. Our analysis points to the relevance of the coupling between momentum eigenstates at weak potential strength for the delocalization of a quantum particle. Received 3 May 2002 / Received in final form 2 October 2002 Published online 29 November 2002  相似文献   

14.
We examine the problem of efficiently collecting the photons produced by solid-state single photon sources. The extent of the problem is first established with the aid of simple physical concepts. Several approaches to improving the collection efficiency are then examined and are broadly categorized into two types. First are those based on cavity quantum dynamics, in which the pathways by which the source may emit a photon are restricted, thus channeling emission into one desired mode. Second are those where we try to reshape the free space modes into a target mode in an optimal way, by means of refraction, without fundamentally altering the way in which the source emits. Respectively, we examine a variety of microcavities and solid immersion lenses. Whilst we find that the micropillar microcavities offer the highest collection efficiency (∼70%), choosing this approach may not always be appropriate due to other constraints. Details of the different approaches, their merits and drawbacks are discussed in detail. Received 19 July 2001 and Received in final form 5 October 2001  相似文献   

15.
We describe a cryptographic protocol consisting of two entangled beams of squeezed light which makes use of statistical tests to deduce the secret key bit. The sender (Alice) encrypts a secret key by modulating the phase of the beam sent in public by the receiver (Bob) who keeps the other beam private. The knowledge of the degree of non classical correlation between the beam quadrature components measured in private and in public allows only Bob to decrypt the secret key. With a view towards absolute security, we formally prove that any external intervention from an eavesdropper (Eve) during the communication process introduces necessarily some modification susceptible to be detected. Statistical confidentiality tests are proposed to detect the presence of Eve. Received 12 July 2001 and Received in final form 11 November 2001  相似文献   

16.
We introduce phase space concepts to describe quantum states in a disordered system. The merits of an inverse participation ratio defined on the basis of the Husimi function are demonstrated by a numerical study of the Anderson model in one, two, and three dimensions. Contrary to the inverse participation ratios in real and momentum space, the corresponding phase space quantity allows for a distinction between the ballistic, diffusive, and localized regimes on a unique footing and provides valuable insight into the structure of the eigenstates. Received 5 March 2002  相似文献   

17.
Recently it was demonstrated that the rotational and vibrational spectra of quantum rings containing few electrons can be described quantitatively by an effective spin-Hamiltonian combined with rigid center-of-mass rotation and internal vibrations of localized electrons. We use this model Hamiltonian to study the quantum rings at finite temperatures and in presence of a nonzero magnetic field. Total spin, angular momentum and pair correlation show similar phase diagram which can be understood with help of the rotational spectrum of the ring. Received 18 January 2002 Published online 13 August 2002  相似文献   

18.
We report both two-dimensional numerical simulations and experimental results that confirm the robustness of a new method for inhibiting vortex shedding associated to the Bénard-von Kármán (BvK) instability in the wake of a cylinder. Using the SIMPLER algorithm on a 2D channel, we solve the Navier-Stokes equations and we show that pressure suction at the front stagnation point of a circular cylinder, modelled here through a point sink located at the front stagnation point, can completely suppress the Bénard-von Kármán instability for super-critical Reynolds numbers. Comparison with recent experimental results are in close agreement. Received 7 March 2002 / Received in final form 12 September 2002 Published online 29 November 2002  相似文献   

19.
Here we consider the dynamics of a two-level system under an external time-dependent field. We show that in the case of a bichromatic field the dynamical localization effect is strongly sensitive with respect to the commensurability of the driving frequencies. Received 8 May 2002 / Received in final form 4 July 2002 Published online 24 September 2002 RID="a" ID="a"e-mail: Sacchetti@unimo.it  相似文献   

20.
Results on dissipative isoscalar modes of a hot and dilute nuclear droplet are presented. As compared to the adiabatic limit (part I), realistic dissipation yields a substantial reduction of the growth rates for all unstable modes, while the area of spinodal instability in the (ϱ,T)-plane remains unchanged. The qualitative features of multifragmentation through spinodal decomposition as obtained in the adiabatic limit are not significantly affected by dissipation. Received: 10 January 2002 / Accepted: 10 February 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号