首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this work, a modified carbon paste electrode consisting of Nickel dispersed in poly(ortho-aminophenol) was used for electrocatalytic oxidation of methanol in alkaline solution. A carbon paste electrode bulk modified with o-aminophenol was used for polymer preparation by cyclic voltammetry method; then, Ni(II) ions were incorporated by immersion of the modified electrode in 1 M Ni(II) ion solution at open circuit. The electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)–Ni(II) couple. Electrocatalytic oxidation of methanol on the surface of modified electrode was investigated with cyclic voltammetry and chronoamperometry methods, and the dependence of the oxidation current and shape of cyclic voltammograms on methanol concentration and scan rate were discussed. Also, long-term stability of modified electrode for electrocatalytic oxidation of methanol was investigated.  相似文献   

2.
《Electroanalysis》2004,16(3):199-209
Electrocatalytic oxidation of methanol on a glassy carbon disc electrode modified with Ni(II)‐hematoporphyrin IX, complex and conditioned by potential recycling in a limited range (between 100 and 600 mV vs. SCE) in 0.10 M NaOH solution, abbreviated as NiOHPME(A), was studied by cyclic voltammetry in alkaline medium. The results were compared with those obtained for a NiO modified glassy carbon electrode, NiOME, prepared in similar conditions. The findings show that the NiOHP film at NiOHPME(A) behaves as an efficient electrocatalyst for the oxidation of methanol in alkaline medium via Ni(III) species with the cross‐exchange reaction occurring throughout the layer at a low concentration of methanol and for a thin film of modifier. A plausible mechanism was proposed for catalytic oxidation of methanol at NiOHP modified electrode. Moreover, the effects of various parameters such as the scan rate, methanol concentration, thickness of NiOHP film and the real surface area of modified electrode on the oxidation of methanol were investigated. Finally, it has been shown that the NiOHPME(A) has a long‐term stability toward the oxidation of methanol.  相似文献   

3.
The electrocatalytic oxidation of methanol studied at the surface of nickel disc electrode coated with N,N-bis(salicylidene)phenylenediamine (Salophen) legend in 0.10 M NaOH solution using cyclic voltammetry. The results showed that the Ni-salophen layer formed at the surface of electrode behaves as an efficient electrocatalyst for the oxidation of methanol in alkaline medium. The thermal analysis of Ni-salophen complex studied at temperature ranges 0–800°C in argon atmosphere. Also, FTIR was employed to prove the formation of complex on the modified electrode surface. Moreover, the effects of various parameters such as oven temperature, methanol concentration, NaOH concentration and media temperature on electro-oxidation of methanol were investigated. The kinetic parameters such as activation energy and Tafel slope were calculated for methanol oxidation on the modified electrode surface. Published in Elektrokhimiya in Russian, 2009,, 2009, Vol. 45, No. 2, pp. 203–210. The text was submitted by author in English.  相似文献   

4.
Electrocatalytic oxidation of methanol on a glassy carbon electrode coated with Ni(II)-(1,2-phenylendiamine)2 (GC/NiOPD), conditioned by the potential recycling in a potential range of 100–650 mV (vs. SCE) is studied by cyclic voltammetry in an alkaline medium (0.10 M NaOH). The results show that the NiOPD layer formed at the surface of the electrode behaves as an efficient electrocatalyst for the oxidation of methanol in the alkaline medium via the Ni(III) species with a cross exchange reaction occurring throughout the layer at a low concentration of methanol. The effects of various parameters such as potential scan rates, methanol concentration and NiOPD surface concentration on the electro-oxidation of methanol are also investigated.  相似文献   

5.
Nickel ions were incorporated in NaY zeolite according to cation exchange mechanism. Then NiY zeolite was used as modifier for preparation of modified carbon paste electrode. The electrochemical behavior of NiY-modified carbon paste electrode (NiY/CPE) was studied in alkaline solution using cyclic voltammetry method. Ability of different electrodes containing NiY/CPE, Ni-NiY/CPE, Ni-NaY/CPE, and Ni/CPE for electrocatalytic oxidation of methanol was compared (three last electrodes prepared by open circuit accumulation of Ni(II) ions on the surface of NiY/CPE, NaY/CPE, and bare CPE, respectively). Results show that Ni-NiY/CPE is best catalyst for the electrochemical oxidation of methanol in alkaline solution and both process of earlier Ni ion incorporation through cation exchange in NaY zeolite and open circuit accumulation of Ni ion on the surface of electrode are essential to have good catalyst. Effect of graphite–zeolite ratio on electrocatalytic current was studied and 3:1 ratio of graphite–zeolite was selected as optimum ratio for preparing electrode. Ni-NiY/CPE has very good stability toward the methanol oxidation in concentration range of 0.005 to 0.5 M. Finally, using chronoamperometric method, the catalytic rate constant (k) for methanol was found to be 1.56 × 104 cm3 mol−1 s−1.  相似文献   

6.
Electrolytically deposited Ni on polyaniline film covered carbon paste electrode (Ni/PANI/CPE) was used as anode for the electrooxidation of methanol in alkaline medium. The electrochemical behavior and electrocatalytic activity of the electrode were studied using cyclic voltammetry, impedance spectroscopy, chronomethods, and polarization studies. The morphology and composition of the modified film were obtained using scanning electron microscope and energy dispersive X-ray analysis techniques. The electrooxidation of methanol in NaOH was found to be more efficient on Ni/PANI/CPE than on bare Ni, electrodeposited Ni on Pt, Ni on glassy carbon, and Ni on CPE substrates. Partial chemical displacement of dispersed Ni on PANI with Pt or Pd further improved its performance towards methanol oxidation.  相似文献   

7.
There is a high overvoltage in the oxidation of methanol in fuel cells, and so modified electrodes are used to decrease it. A modified electrode that used Ni(Ⅱ) loaded analcime zeolite to catalyze the electrooxidation of methanol in alkaline solution was proposed. Analcime zeolite was synthesized by hydrothermal synthesis, and Ni(Ⅱ) ions were incorporated into the analcime structure, which was then mixed with carbon paste to prepare modified electrode. The electrocatalytic oxidation of methanol on the surface of the modified electrode in alkaline solution was investigated by cyclic voltammetry and chronoamperometry. The effects of the scan rate of the potential, concentration of methanol, and amount of zeolite were investigated. The rate constant for the catalytic reaction of methanol was 6×103 cm3 mol-1 s-1 from measurements using chronoamperometry. The proposed electrode significantly improved the electron transfer rate and decreased the overpotential for methanol oxidation.  相似文献   

8.
Carbon paste electrodes were modified by nickel phosphate nanoparticles and nickel phosphate Versailles Santa Barbara-5 molecular sieves. Then, transition metal ions of Ni(II) were incorporated to the nickel phosphate by immersion of the modified electrode in a 0.1-M nickel chloride solution. The electrochemical behaviors of the modified electrodes were studied using cyclic voltammetry. These modified electrodes were used as anode for the electrocatalytic oxidation of methanol in alkaline medium. The influence of some parameters such as different molecular sieves, scan rate of potential, and methanol concentration was investigated on the anodic peak height of the methanol oxidation. The best result was obtained by nickel phosphate nanoparticles.  相似文献   

9.
Poly(isonicotinic acid) (PINA) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode (CPE). Ni(II) and Co(II) ions were incorporated into the electrode by immersion of the polymer-modified electrodes in Ni(II) and Co(II) ion solutions in different proportions. After the preparation of modified electrodes, their electrochemical behavior was studied by cyclic voltammetric experiments. Electrocatalytic oxidation of methanol at the surface of the modified electrodes was studied in 1?M NaOH solution. These modified electrodes exhibit high electrocatalytic activity and stability in alkaline solution, showing oxidation peaks at low potentials with high current densities. The electrooxidation of methanol was found to be more efficient on CPE/PINA(SDS)/Ni80Co20 than on CPE/PINA(SDS)/Ni and CPE/PINA(SDS)/Ni50Co50. The effects of various parameters such as scan rates and methanol concentration on the electrooxidation of methanol are also investigated.  相似文献   

10.
《Electroanalysis》2003,15(4):278-286
The electrocatalytic oxidation of methanol at a glassy carbon electrode modified by a thin film of poly(o‐aminophenol) (PoAP) containing Pt, Pt‐Ru and Pt‐Sn microparticles has been investigated using cyclic voltammetry as analytical technique and 0.10 M perchloric acid as supporting electrolyte. It has been shown that the presence of PoAP film increases considerably the efficiency of deposited Pt microparticles toward the oxidation of methanol. The catalytic activity of Pt particles is further enhanced when Ru or specially Sn is co‐deposited in the polymer film. The effects of various parameters such as the thickness of polymer film, concentration of methanol, medium temperature as well as the long term stability of modified electrodes have also been investigated.  相似文献   

11.
Electrochemically platinum plated aluminum (Al/Pt) was used as an electrode substrate for the electropolymerization of aminophenols and fabrication of composite electrodes based on platinum nano-particles. The poly(o-aminophenol) (PoAP), poly(m-aminophenol) (PmAP), and poly(p-aminophenol) (PpAP) were synthesized on the Al/Pt electrode, and further modification was performed by deposition of platinum nano-particles onto polymer matrixes. The electrochemical and morphological characteristic of the composed electrodes were carried out by cyclic voltammetry and scanning electron microscopy, respectively. The electrocatalytic oxidation of methanol on the composite electrodes was studied by cyclic voltammetry in 0.1 M sulfuric acid as supporting electrolyte. It was found that the Al/Pt/PoAP electrode incorporated Pt nano-particles (Al/Pt/PoAP/Pt) exhibits a higher electrocatalytic activity for the oxidation of methanol than the Al/Pt/PmAP/Pt and Al/Pt/PpAP/Pt electrodes. On the other hand, a higher catalytic current for methanol oxidation was found on the Al/Pt/PoAP/Pt electrode in comparison to bulk Pt and Al–Pt (Al with 0.2 mg cm−2 of Pt particles) electrodes. The effects of various parameters such as thickness of the polymer film, concentration of the monomer, Pt loading method and the Pt amounts, concentration of the methanol, and the medium temperature were studied on the electrooxidation of methanol. The long-term stability of the modified electrode has also been investigated.  相似文献   

12.
In this study, the electrocatalytic oxidation of methanol at nickel modified ionic liquid/carbon paste electrode (Ni/IL/CPE) in alkaline medium is presented. The ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, is incorporated into the electrode as a binder. Electrochemical impedance spectroscopy is employed to evaluate the electron transfer rate of this electrode. Ni(II) ions are incorporated into the electrode by immersion of this electrode in 1.0?M nickel sulfate solution. Cyclic voltammetry and chronoamperometry techniques are used for the electrochemical study of this modified electrode in the absence and the presence of methanol. The effect of methanol concentration on the anodic peak current shows an increase in the anodic peak current up to 1.25?M. Current density of Ni/IL/CPE for methanol oxidation in alkaline media is investigated by comparison with some of the previously reported electrodes. Results show that this electrode exhibits a high efficient electrocatalytic activity toward the oxidation of methanol with the current density of 17.6?mA?cm?2. The rate constant for chemical reaction between methanol and redox sites of electrode is calculated. This new proposed electrode is simple and efficient enough, and it can be widely used as anode in direct methanol fuel cell.  相似文献   

13.
A nickel hydroxide-modified nickel electrode (Ni(OH)2/Ni) was successfully prepared by the cyclic voltammetry (CV) method and the electrocatalytic properties of the electrode for formaldehyde and methanol oxidation have been investigated respectively. The Ni(OH)2/Ni electrode exhibits high electrocatalytic activity in the reaction. A new method has been developed for formaldehyde determination at the nickel hydroxide-modified nickel electrode and the experimental parameters were optimized. The oxidation peak current is linearly proportional to the concentration of formaldehyde in the range of 7.0 × 10?5 to 1.6 × 10?2 M with a detection limit of 2.0 × 10?5 M. Recoveries of artificial samples are between 93.3 and 103.5%. The effect of scan rate and methanol concentration on the electrochemical behavior of methanol were investigated respectively.  相似文献   

14.
Nanocrystalline nickel with an average diameter of about 16 nm and a face-centered cubic (fcc) structure was uniformly attached to the surface of carbon nanotubes (CNT) by wet chemistry. The sample was characterized by X-ray powder diffraction and transmission electron microscopy (TEM). A glass carbon electrode modified with nickel-modified multi-wall carbon nanotubes (MWCNTs-Ni/GCE) was prepared. The electrochemical behavior of the MWCNTs-Ni/GCE and the electrocatalytic oxidation of methanol at the MWCNTs-Ni/GCE were investigated by cyclic voltammetry in 1.0 mol/L NaOH solution. The cyclic voltammograms showed that the electron transfer between β-Ni(OH)2 and β-NiOOH is mainly a diffusion-controlled quasireversible process, and that the electrode has high catalytic activity for the electrooxidation of methanol in alkaline medium, revealing its potential application in alkaline rechargeable batteries and fuel cells. __________ Translated from Chinese Journal of Applied Chemistry, 2007, 24(5): 503–506 [译自: 应用化学]  相似文献   

15.
通过电化学聚合法在碳糊电极上共聚制备了聚邻氨基酚/Ni2+膜(Ni2+/P-OAP/CPE), 研究了膜的伏安特性, 并制成dsDNA修饰电极, 通过电化学和紫外光谱法进行表征. 将dsDNA/Ni2+/P-OAP/CPE电极应用于多巴胺的电催化氧化, 同时将该方法用于盐酸多巴胺针剂的测定, 亦获得了满意的结果.  相似文献   

16.
This work describes the promising activity of silver nanoparticles on the surface of a poly(2-amino diphenylamine) modified carbon paste electrode (CPE) towards formaldehyde oxidation. Electrodeposition of the conducting polymer film on the CPE was carried out using consecutive cyclic voltammetry in an aqueous solution of 2-aminodiphenylamine and HCl. Nitrogen groups in the polymer backbone had a Ag ion accumulating effect, allowing Ag nanoparticles to be electrochemically deposited on the surface of the electrode. The electrochemical and morphological characteristics of the modified electrode were investigated. The electro-oxidation of formaldehyde on the surface of electrode was studied using cyclic voltammetry and chronoamperometry in aqueous solution of 0.1 mol/L NaOH. The electro-oxidation onset potential was found to be around -0.4 V, which is unique in the literature. The effect of different concentrations of formaldehyde on the electrocatalytic activity of the modified electrode was investigated. Finally, the diffusion coefficient of formaldehyde in alkaline media was calculated to be 0.47 × 10-6 cm2/s using chronoamperometry.  相似文献   

17.
The poly(m‐toluidine) film was prepared by using the repeated potential cycling technique in an acidic solution at the surface of carbon paste electrode. Then transition metal ions of Ni(II) were incorporated to the polymer by immersion of the modified electrode in a 0.2 M NiSO4, also the electrochemical characterization of this modified electrode exhibits stable redox behavior of the Ni(III)/Ni(II) couple. The electrocatalytic ability of Ni(II)/poly(m‐toluidine)/modified carbon paste electrode (Ni/PMT/MCPE) was demonstrated by electrocatalytic oxidation of hydrogen peroxide with cyclic voltammetry and chronoamperometry methods in the alkaline solution. The effects of scan rate and hydrogen peroxide concentration on the anodic peak height of hydrogen peroxide oxidation were also investigated. The catalytic oxidation peak current showed two linear ranges with different slopes dependent on the hydrogen peroxide concentration and the lower detection limit was 6.5 μM (S/N=3). The catalytic reaction rate constant, (kh), was calculated 5.5×102 M?1 s?1 by the data of chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility and high catalytic activity toward the hydrogen peroxide oxidation. This method was also applied as a simple method for routine control and can be employed directly without any pretreatment or separation for analysis cosmetics products.  相似文献   

18.
Conducting and stable poly (N-methylaniline) film was prepared by using the repeated potential cycling technique in aqueous solution containing N-methylaniline, sulfuric acid, and sodium dodecyl sulfate (SDS) at the surface of carbon paste electrode (CPE). The transition metal ions of Co(ІІ) were incorporated to the polymer by immersion of the modified electrode in 0.1 M cobalt chloride solution for 10 min. The electrochemical characterization of this modified electrode exhibits stable redox behavior of Co(ІІ)Co(ІІІ) and formation of insoluble oxide/hydroxide cobalt species on the CPE surface. The modified electrode showed well-defined and stable redox couples in alkaline aqueous solution. The modified electrode showed excellent electrocatalytic activity for oxidation of hydrogen peroxide. The response of modified electrode toward the H2O2 oxidation was examined using cyclic voltammetry, differential pulse voltammetry, square wave voltammetry, and chronoamperometry. This modified electrode has many advantages such as simple preparation procedure, good reproducibility, and high catalytic activity toward the hydrogen peroxide oxidation. Such characteristics were explored for the specific determination of hydrogen peroxide in cosmetics product sample, giving results in excellent agreement with those obtained by standard method.  相似文献   

19.
A film of Ni(OH)2 deposited cathodically on a roughened nickel substrate consists of even nanoparticles, which were characterized by atomic-force microscopy (AFM). The mechanism of potential oscillations in the electrocatalytic oxidation of methanol on this film electrode in alkaline medium was studied in situ by means of Raman spectroscopy in combination with electrochemical measurements. The redox change of the nickel hydroxide film, the concentration distribution of methanol in the diffusion layer, and the oxidation products of methanol were characterized in situ by time-resolved, spatial-resolved, and potential-dependent Raman spectroscopy, respectively. Electrochemical reactions, i.e. methanol oxidation and periodic oxygen evolution, coupling with alternately predominant diffusion and convection mass transfer of methanol, account for the potential oscillations that occur during oxidation of methanol above its limiting diffusion current. This mechanism is totally different from that of methanol oxidation on platinum electrodes, for which surface steps, i.e. formation and removal of COad, are essential.This work is dedicated to Professor Gyorgy Horanyi on the occasion of his 70th birthday in recognition of his numerous contributions to field of electrochemical oscillations and electrocatalysis at Ni-hydroxide electrodes.  相似文献   

20.
A polymer film of tryptophan was obtained at a glassy carbon electrode (GC) by cyclic voltammetry. The cyclic voltammograms of the polymer film electrode(poly-Try GC) exhibited two redox waves. After incorporation of Ni(II), the electrode (poly-Ni(II) Try/GC) was greatly improved in catalytic activity. The potential 0.65 V of methanol oxidation at the poly-Ni(II)Try/GC is much more negative than the potential at the poly-Try/GC and at the bare glassy carbon (GC) electrode in 0.01 mol/L NaOH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号