首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The strain gradient effect becomes significant when the size of fracture process zone around a crack tip is comparable to the intrinsic material lengthl, typically of the order of microns. Using the new strain gradient deformation theory given by Chen and Wang, the asymptotic fields near a crack tip in an elastic-plastic material with strain gradient effects are investigated. It is established that the dominant strain field is irrotational. For mode I plane stress crack tip asymptotic field, the stress asymptotic field and the couple stress asymptotic field can not exist simultaneously. In the stress dominated asymptotic field, the angular distributions of stresses are consistent with the classical plane stress HRR field; In the couple stress dominated asymptotic field, the angular distributions of couple stresses are consistent with that obtained by Huang et al. For mode II plane stress and plane strain crack tip asymptotic fields, only the stress-dominated asymptotic fields exist. The couple stress asymptotic field is less singular than the stress asymptotic fields. The stress asymptotic fields are the same as mode II plane stress and plane strain HRR fields, respectively. The increase in stresses is not observed in strain gradient plasticity for mode I and mode II, because the present theory is based only on the rotational gradient of deformation and the crack tip asymptotic fields are irrotational and dominated by the stretching gradient. The project supported by the National Natural Science Foundation of China (19704100), National Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20), CAS K.C. Wong Post-doctoral Research Award Fund and Post-doctoral Science Fund of China  相似文献   

2.
An elastic-viscoplastic constitutive model was adopted to analyze asymptotically the tip-field of moving crack in linear-hardening materials under plane strain condition. Under the assumption that the artificial viscosity coefficient was in inverse proportion to power law of the rate of effective plastic strain, it is obtained that stress and strain both possess power law singularity and the singularity exponent is uniquely determined by the power law exponent of the rate of effective plastic strain. Variations of zoning structure according to each material parameter were discussed by means of numerical computation for the tip-field of mode Ⅱ dynamic propagating crack, which show that the structure of crack tip field is dominated by hardening coefficient rather than viscosity coefficient. The secondary plastic zone can be ignored for weak hardening materials while the secondary plastic zone and the secondary elastic zone both have important influence on crack tip field for strong hardening materials. The dynamic solution approaches to the corresponding quasi-static solution when the crack moving speed goes to zero, and further approaches to the HR (Hui-Riedel) solution when the hardening coefficient is equal to zero.  相似文献   

3.
THEPLANESTRESSCRACK-TIPFIELDFORANINCOMPRESSIBLERUBBERMATERIALGaoYu-chen(高玉臣),ShiZhi-fei(石志飞)(HarbinShipbuildingEngneeringInst...  相似文献   

4.
In this paper, a new phenomenological theory with strain gradient effects is proposed to account for the size dependence of plastic deformation at micro- and submicro-length scales. The theory fits within the framework of general couple stress theory and three rotational degrees of freedom ωi are introduced in addition to the conventional three translational degrees of freedom ui. ωi is called micro-rotation and is the sum of material rotation plus the particles' relative rotation. While the new theory is used to analyze the crack tip field or the indentation problems, the stretch gradient is considered through a new hardening law. The key features of the theory are that the rotation gradient influences the material character through the interaction between the Cauchy stresses and the couple stresses; the term of stretch gradient is represented as an internal variable to increase the tangent modulus. In fact the present new strain gradient theory is the combination of the strain gradient theory proposed by Chen and Wang (Int. J. Plast., in press) and the hardening law given by Chen and Wang (Acta Mater. 48 (2000a) 3997). In this paper we focus on the finite element method to investigate material fracture for an elastic-power law hardening solid. With remotely imposed classical K fields, the full field solutions are obtained numerically. It is found that the size of the strain gradient dominance zone is characterized by the intrinsic material length l1. Outside the strain gradient dominance zone, the computed stress field tends to be a classical plasticity field and then K field. The singularity of stresses ahead of the crack tip is higher than that of the classical field and tends to the square root singularity, which has important consequences for crack growth in materials by decohesion at the atomic scale.  相似文献   

5.
Asymptotic singular solutions of the HRR type are presented for anti-plane shear cracks in ductile crystals. These are assumed to undergo Taylor hardening with a power-law relation between stress and strain at sufficiently large strain. Results are given for several crack orientations in fcc and bcc crystals. The neartip region divides into angular sectors which are the maps of successive flat segments and vertices on the yield locus. Analysis is simplified by use of new general integrals of crack tip singular fields of the HRR type. It is conjectured that the single crystal HRR fields are dominant only over part of the plastic region immediately adjacent to the crack tip, even at small scale yielding, and that their domain of validity vanishes as the perfectly plastic limit is approached. This follows from the fact that while in the perfectly plastic limit the HRR stress states approach the correct discontinuous distributions of the complete elasticideally plastic solutions for crystals (Rice and Nikolic, J. Mech. Phys. Solids33, 595 (1985)), the HRR displacement fields in that limit remain continuous. Instead, the complete elastic-ideally plastic solutions have discontinuous displacements along planar plastic regions emanating from the tip in otherwise elastically stressed material. The approach of the HRR stress fields to their discontinuous limiting distributions is illustrated in graphical plots of results. A case examined here of a fcc crystal with a crack along a slip plane is shown to lead to a discontinuous near-tip stress state even in the hardening regime.Through another limiting process, the asymptotic solution for the near-tip field for an isotropic material is also derived from the present single crystal framework.  相似文献   

6.
In this paper, nonlinear constitutive equations are deduced strictly according to the constitutive axioms of rational continuum mechanics. The existing judgments are modified and improved. The results show that the constitutive responses of nonlocal thermoelastic body are related to the curvature and higher order gradient of its material space, and there exists an antisymmetric stress whose average value in the domain occupied by thermoelastic body is equal to zero. The expressions of the antisymmetric stress and the nonlocal residuals are given. The conclusion that the directions of thermal conduction and temperature gradient are consistent is reached. In addition, the objectivity about the nonlocal residuals and the energy conservation law of nonlocal field is discussed briefly, and a formula for calculating the nonlocal residuals of energy changing with rigid motion of the spatial frame of reference is derived. Foundation item: the Natural Science Foundation of Province Jiangshu (BK97063)  相似文献   

7.
A mechanical model was established for mode Ⅱ interfacial crack static growingalong an elastic-elastic power law creeping bimaterial interface. For two kinds of boundaryconditions on crack faces, traction free and frictional contact, asymptotic solutions of thestress and strain near tip-crack were given. Results derived indicate that the stress andstrain have the same singularity, there is not the oscillatory singularity in the field; thecreep power-hardening index n and the ratio of Young‘s module notably influence the crack-tip field in region of elastic power law creeping material and n only influences distribution ofstresses and strains in region of elastic material. When n is bigger, the creepingdeformation is dominant and stress fields become steady, which does not change with n.Poisson‘s ratio does not affect the distributing of the crack-tip field.  相似文献   

8.
The numerical analyses of stationary mathematically sharp Mode I crack in FCC and BCC crystals with elastic-ideally plastic (EIP) and fast hardening saturation (FHS) law are carried out in the present paper. From the calculated results, it is shown that: for the cases of small strain, EIP crystal cracks, the features of concentrated deformation patterns and the stress state in near-crack tip deformation fields are identical to the earlier analytical solutions, but along the angular sector boundaries, there exist narrow complex stress zones. The overall characteristics of deformation patterns for the cases of EIP and FHS are similar. The behaviours of crack tip opening can be characterized by crack-tip-opening-displacement (CTOD). For the case of FHS, finite deformation BCC crystal crack, our calculations are qualitatively in agreement with recent experimental observations. The project supported by National Natural Science Foundation of China  相似文献   

9.
This paper presents a separated law of hardening in plasticity with strain gradient effects. The value of the length parameter ℓ contained in this model was estimated from the experimental data for copper. The project supported by the National Natural Science Foundation of China  相似文献   

10.
Based on a constitutive law which includes the shear components of transformation plasticity, the asymptotic solutions to near-tip fields of plane-strain mode I steadity propagating cracks in transformed ceramics are obtained for the case of linear isotropic hardening. The stress singularity, the distributions of stresses and velocities at the crack tip are determined for various material parameters. The factors influencing the near-tip fields are discussed in detail.Project supported by the National Natural Science Foundation of China  相似文献   

11.
The mode I plane strain crack tip field with strain gradient effects is presented in this paper based on a simplified strain gradient theory within the framework proposed by Acharya and Bassani. The theory retains the essential structure of the incremental version of the conventionalJ 2 deformation theory. No higher-order stress is introduced and no extra boundary value conditions beyond the conventional ones are required. The strain gradient effects are considered in the constitutive relation only through the instantaneous tangent modulus. The strain gradient measures are included into the tangent modulus as internal parameters. Therefore the boundary value problem is the same as that in the conventional theory. Two typical crack problems are studied: (a) the crack tip field under the small scale yielding condition induced by a linear elastic mode-IK-field and (b) the complete field for a compact tension specimen. The calculated results clearly show that the stress level near the crack tip with strain gradient effects is considerable higher than that in the classical theory. The singularity of the strain field near the crack tip is nearly equal to the square-root singularity and the singularity of the stress field is slightly greater than it. Consequently, theJ-integral is no longer path independent and increases monotonically as the radius of the calculated circular contour decreases. The project supported by the National Natural Science Foundation of China (19704100 and 10202023) and the Natural Science Foundation of Chinese Academy of Sciences (KJ951-1-20)  相似文献   

12.
The higher order asymptotic fields at the tip of a sharp V-notch in a power-hardening material for plane strain problem of Mode I are derived. The order hierarchy in powers ofr for various hardening exponentsn and notch angles β is obtained. The angular distributions of stress for several cases are plotted. The self-similarity behavior between the higher order terms is noticed. It is found that the terms with higher order can be neglected for the V-notch angle β>45°. Project supported by the National Natural Science Foundation of China (Nos. 10132010 and 10072033).  相似文献   

13.
In this paper, the stress and strain structures of Mode I 3-D crack in power hardening material are studied by analyzing the fundamental equations of elastic-plastic mechanics. It is shown that three regions, Z1,Z2 and Z3 can be divided in the thickness direction according to the stress characteristic. In region Z1, the stress components in the plane Perpendicular to z axis (thickness direction) can be solved first using the fundamental equations of plane strain state; in region Z3, they can be solved first by the equations of plane stress state. The region Z2 is defined as a transition layer. It is shown that the transition layer is the characteristic of Mode I 3-D crack in elastic-plastic state, and it is significant to the research on 3-D fracture. The crack tip opening displacement CTOD is chosen to describe the amplitude coefficient of the local stress field, and the distribution of CTOD in 3-D state is investigated.The project supported by National Natural Science Foundation of China.  相似文献   

14.
The asymptotic fields near the tip of a crack steadily propagating in a ductile material under Mode III loading conditions are investigated by adopting an incremental version of the indeterminate theory of couple stress plasticity displaying linear and isotropic strain hardening. The adopted constitutive model is able to account for the microstructure of the material by incorporating two distinct material characteristic lengths. It can also capture the strong size effects arising at small scales, which results from the underlying microstructures. According to the asymptotic crack tip fields for a stationary crack provided by the indeterminate theory of couple stress elasticity, the effects of microstructure mainly consist in a switch in the sign of tractions and displacement and in a substantial increase in the singularity of tractions ahead of the crack-tip, with respect to the classical solution of LEFM and EPFM. The increase in the stress singularity also occurs for small values of the strain hardening coefficient and is essentially due to the skew-symmetric stress field, since the symmetric stress field turns out to be non-singular. Moreover, the obtained results show that the ratio η introduced by Koiter has a limited effect on the strength of the stress singularity. However, it displays a strong influence on the angular distribution of the asymptotic crack tip fields.  相似文献   

15.
Owing to the absence of proper analytical solution of cantilever beams for couple stress/strain gradient elasto-plastic theory, experimental studies of the cantilever beam in the micro-scale are not suitable for the determination of material length-scale. Based on the couple stress elasto-plasticity, an analytical solution of thin cantilever beams is firstly presented, and the solution can be regarded as an extension of the elastic and rigid-plastic solutions of pure bending beam. A comparison with numerical results shows that the current analytical solution is reliable for the case of σ0 〈〈 H 〈〈 E, where σ0 is the initial yield strength, H is the hardening modulus and E is the elastic modulus. Fortunately, the above mentioned condition can be satisfied for many metal materials, and thus the solution can be used to determine the material length-scale of micro-structures in conjunction with the experiment of cantilever beams in the micro-scale.  相似文献   

16.
In this paper, a systematic approach is proposed to obtain the macroscopic elastic-plastic constitutive relation of particle reinforced composites (PRC). The strain energy density of PRC is analyzed based on the cell model, and the analytical formula for the macro-constitutive relation of PRC is obtained. The strength effects of volume fraction of the particle and the strain hardening exponent of matrix material on the macro-constitutive relation are investigated, the relation curve of strain versus stress of PRC is calculated in detail. The present results are consistent with the results given in the existing references. The project supported by the National Natural Science Foundation of China (No. 19704100) and National Science Foundation of Chinese Academy of Sciences (Project KJ951-1-20).  相似文献   

17.
A full field solution, based on small deformation, three-dimensional elastic–plastic finite element analysis of the centrally cracked thin disk under mode I loading has been performed. The solution for the stresses under small-scale yielding and lo!cally fully plastic state has been compared with the HRR plane stress solution. At the outside of the 3D zone, within a distance of rσo/J=18, HRR dominance is maintained in the presence of a significant amount of compressive stress along the crack flanks. Ahead of this region, the HRR field overestimate the stresses. These results demonstrate a completely reversed state of stress in the near crack front compared to that in the plane strain case. The combined effect of geometry and finite thickness of the specimen on elastic–plastic crack tip stress field has been explored. To the best of our knowledge, such an attempt in the published literature has not been made yet. For the qualitative assessment of the results some of the field parameters have been compared to the available experimental results of K, gives a fair estimate of the crack opening stress near the crack front at a distance of order 10−2 in. On the basis of this analysis, the Linear Elastic Fracture Mechanics approach has been adopted in analyzing the fatigue crack extension experiments performed in the disk (Part II).  相似文献   

18.
A mechanical model was established for mode Ⅱ interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip-crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power-hardening index n and the ratio of Young' s module notably influence the cracktip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady, which does not change with n.Poisson ' s ratio does not affect the distributing of the crack- tip field.  相似文献   

19.
Asymptotic near-tip fields are analyzed for a plane strain Mode I crack propagating dynamically in non-associative elastic–plastic solids of the Drucker–Prager type with an isotropic linear strain hardening response. Eigen solutions are obtained over a range of material parameters and crack speeds, based on the assumption that asymptotic solutions are variable-separable and fully continuous. A limiting speed, beyond which a tendency to slope discontinuity in angular distributions of stresses and velocities is detected, is found to deviate from the associative models. At low strain-hardening rates, the onset of the plastic potential corner zone ahead of the crack-tip imposes another limit to the crack speed. Correspondingly, those limits imply the limits to the degree of non-associativity at a given crack speed. In addition, a tendency to slope discontinuity in the angular radial stress distribution sets another limit on the non-associativity at vanishing hardening rates.  相似文献   

20.
In this article, distributions of internal stress and internal electric fields around a triple point of ferroelectric polycrystals generated by the spontaneous deformation and spontaneous polarization were investigated. It was found that when all three grains consist of a single domain, the internal stresses and the internal electric fields do not vanish. Though it may be determined according to the principle of energy, the spontaneous configuration will not be unique without involving other conditions due to the symmetry of the crystal structure. Sponsored by National Natural Science Foundation of China(No. 19672053) and Special Funds for Doctoral Programs (No. 96061305).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号