首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Quenched and sensitized lanthanide luminescence as detection in liquid chromatography has been investigated. An important advantage in comparison with phosphorescence is that the long-lived luminescence as applied does not require deoxygenation of the samples. In order to obtain a high luminescence intensity Tb(III) complexes with acetylacetonate have been formed, after which indirect excitation of Tb(III) can be realized via the ligands. The potential of Tb(III) luminescence as a detection method in ion chromatography has been shown for chromate, which is an efficient quencher. Sensitizing of the Tb(III) luminescence has been applied for thiol-containing analytes. These compounds are derivatized with maleimidyl salicylic acid to complexes that sensitize the Tb(III) luminescence. From a comparison of the results obtained with normal fluorescence detection and time-resolved sensitized Tb(III) luminescence detection it has become clear that the last method has a higher sensitivity, but in particular a higher selectivity.  相似文献   

2.
The photoacoustic (PA) amplitude spectra and luminescence spectra of different Tb(III) complexes (Tb(AA)3.2H2O Na[Tb(AA)4], Tb(AA)3bpy and Tb(AA)3phen) have been measured, and the PA phase shifts of the different complexes calculated. Combined with the luminescence spectra, the PA amplitude spectra reflected the variation of the luminescence efficiency and the PA phase is directly relative to the relaxation processes. According to the variation of the luminescence efficiency and the phase shift, the intramolecular energy transfer and relaxation processes of different Tb(III) complexes were discussed.  相似文献   

3.
A novel ligand, N2,N6-bis[2-(3-methylpyridyl)]pyridine-2,6-dicarboxamide (L2) and the corresponding Eu(III) and Tb(III) hydrochlorate complexes have been synthesized and characterized in detail based on elemental analysis, IR and NMR. The crystal and molecular structure of the complexes was determined by X-ray crystallography. The Eu(III) and Tb(III) ions were found to coordinate to the amido nitrogen atoms and pyridine nitrogen atoms. The luminescence properties of lanthanide complexes in solid state, in different solutions and in different pH value were investigated. The result shows that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes, and the ligand (L2) is an excellent sensitizer to Tb(III) ion.  相似文献   

4.
The coordinately unsaturated terbium complexes Tb.1 and Tb.2 possess two labile metal-bound water molecules that can be displaced upon metal chelation to aromatic carboxylic anions such as salicylic acid in water, which gives rise to large enhancements in the Tb(III) luminescence.  相似文献   

5.
刘兴旺  王娜  索全伶 《有机化学》2009,29(2):292-296
为了寻找新的发光材料并研究β-二酮对稀土配合物发光性能的影响, 我们合成了一个新的β-二酮配体: 1-苯 基-3-(对苯乙炔苯基)-1,3-丙二酮(HPPP), 并用HPPP、邻菲罗啉(phen)分别与Eu(III)和Tb(III)反应, 合成了两个新的三元稀土配合物: Eu(PPP)3phen和Tb(PPP)3phen, 通过红外光谱、化学分析、元素分析对三元稀土配合物的组成和结构进行了表征. 研究了配合物的荧光性质, 发现β-二酮配体对配合物的发光有较大影响, 通过量子化学计算对实验结果进行了解释.  相似文献   

6.
(Z)-4-(4-Methoxyphenoxy)-4-oxobut-2-enoic acid and its solid rare earth complexes LnL3.2H2O (Ln=La, Eu, Tb) were synthesized and characterized by means of MS, elemental analysis, FTIR, 13C NMR and TG-DTA. The IR and 13C NMR results show that the carboxylic groups in the complexes coordinated to the rare earth ions in the form of a bidentate ligand, but the ester carboxylic groups have not taken part in the coordination. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were also studied. The strong luminescence emitting peaks at 616nm for Eu(III) and 547nm for Tb(III) can be observed, which could be attributed to the ligand has an enhanced effect to the luminescence intensity of the Eu and Tb.  相似文献   

7.
A time-resolved fluoro-immunoassay (TR-FIA) format is presented based on resonance energy transfer from visible emitting lanthanide complexes of europium and terbium, as energy donors, to semiconductor CdSe/ZnS core/shell nanocrystals (quantum dots, QD), as energy acceptors. The spatial proximity of the donor-acceptor pairs is obtained through the biological recognition process of biotin, coated at the surface of the dots (Biot-QD), and streptavidin labeled with the lanthanide markers (Ln-strep). The energy transfer phenomenon is evident from simultaneous lanthanide emission quenching and QD emission sensitization with a 1000-fold increase of the QD luminescence decay time reaching the hundred mus regime. Delayed emission detection allows for quantification of the recognition process and demonstrated a nearly quantitative association of the biotins to streptavidin with sensitivity limits reaching 1.2 pM of QD. Spectral characterization permits calculation of the energy transfer parameters. Extremely large F?rster radii (R(0)) values were obtained for Tb (104 A) and Eu (96 A) as a result of the relevant spectral overlap of donor emission and acceptor absorption. Special attention was paid to interactions with the varying constituents of the buffer for sensitivity and transfer efficiency optimization. The energy transfer phenomenon was also monitored by time-resolved luminescence microscopy experiments. At elevated concentration (>10(-)(5) M), Tb-strep precipitated in the form of pellets with long-lived green luminescence, whereas addition of Biot-QD led to red emitting pellets, with long excited-state decay times. The Ln-QD donor-acceptor hybrids appear as highly sensitive analytical tools both for TR-FIA and time-resolved luminescence microscopy experiments.  相似文献   

8.
Heterogeneous and homogeneous immunoassays of human thyroid stimulating hormone (hTSH) were developed on immunometric basis using aromatic Tb(III) chelates as electrochemiluminescent labels and varied types of disposable oxide-covered aluminum electrodes as the solid phase of the immunoassays. The long luminescence lifetime of the present labels allows the use of time-resolved electrochemiluminescence detection and provide the low detection limits of these labels and, thus, sensitive immunoassays. The primary antibody of immunometric immunoassays was coated upon aluminum oxide surface by physical absorption. In homogeneous immunoassays using 66 μl cell and 15 min incubation time, a linear calibration range of 0.25-324 μU/ml was obtained by applying only a single cathodic excitation pulse in the detection step of the assay.  相似文献   

9.
The effect of Y(III) and Gd(III) coactivator ions on the intensity of Eu(III) and Tb(III) luminescence in monomer and polymer mixed-metal complexes was studied. Isomorphic replacement of Eu(III) and Tb(III) ions by Y(III) and Gd(III) ions in macromolecular complexes led to sensitization of Eu(III) and Tb(III) ion luminescence. A mechanism of columinescence was suggested. It involves a charge transfer and the ligand orbitals and the vacant orbitals of Eu(III) and Tb(III) ions and coactivators.  相似文献   

10.
Two novel pyrazole-derived ligands, 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid (CDPA) and 3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)-N-phenylpicolinamide (CDPP) were prepared by 3,6-dichloropicolinic acid (DCPA). Their complexes with terbium(III) and europium(III) were synthesized. The complexes were characterized by elemental analysis, infrared spectra, 1H NMR and TG–DTG. Furthermore, the above complexes using 1,10-phenanthroline as a secondary ligand were also synthesized and characterized. The luminescence properties of these complexes in solid state were investigated. The results suggested that Tb(III) complexes exhibit more efficient luminescence than Eu(III) complexes and the fluorescence of the complexes with 1,10-phenanthroline as a secondary ligand was prominently stronger than that of complexes without this ligand., and the three ligand (DCPA), (CDPP) and (CDPA) are excellent sensitizers to Eu(III) and Tb(III) ion.  相似文献   

11.
The binary complex of Tb(III) with N-phenylanthranilic acid (N-HPA) was synthesized, and the ternary complexes were synthesized by introducing 1,10-phenanthroline (Phen), 2,2'-dipyridyl (Bipy), trioctylphosphine oxide (TPPO) as the second ligand, respectively. These complexes were characterized by infrared spectra, UV spectra and fluorescence spectra. The effect and mechanism of different second ligands on the fluorescent intensity of the terbium N-phenylanthranilic acid complexes was discussed. It showed that all the complexes exhibited ligand-sensitized green emission. The luminescence intensity increased in the sequence of Tb(N-PA)(3)Phen相似文献   

12.
Three novel ligands containing pyridine-2,6-dicarboxylic acid unit, trans-4 -(4'-methoxystyryl) pyridine-2,6-dicarboxylic acid, trans-4-(4'-(dimethylamino)styryl)pyridine-2,6-dicarboxylic acid, and trans-4-(4'-(diphenylamino)styryl)pyridine-2,6-dicarboxylic acid were synthesized and their complexes with Eu(III), Tb(III) ions were successfully prepared. The ligands and the corresponding metal complexes were characterized by means of MS, elemental analysis, IR, (1)H NMR and TG-DTA. The luminescence spectra of Eu(III) and Tb(III) complexes in solid state were studied. The strong luminescence emitting peaks at 615 nm for Eu(III) and 545 nm for Tb(III) can be observed. The applications in cell imaging of the europium and terbium complexes were investigated.  相似文献   

13.
Luminescence properties of Tb(III) and Eu(III) complexes of quinolonecarboxylic acid derivatives were studied. Optimal conditions of luminescence were determined, and the influence of surfactants and diethylenetriaminepentaacetic acid on the luminescence properties of the complexes was studied. It was demonstrated that species-specific immunoglobulins labeled with terbium ions can be determined with the detection limit of the lanthanide label 5 x 10-14 M.  相似文献   

14.
Herein, we report a method for studying protein-peptide interactions which exploits the luminescence properties of Tb(III). Lanthanide-binding tags (LBTs) are short peptide sequences comprising 15-20 naturally occurring amino acids that bind Tb(III) with high affinity. These genetically encodable luminescent tags are smaller in size than the Aequorea victoria fluorescent proteins (AFPs) and benefit from the long-lived luminescence lifetime of lanthanides. In this study, luminescence resonance energy transfer (LRET) was used to monitor the interaction between SH2 domains and different phosphopeptides. For the study, the SH2 domains of Src and Crk kinase were each coexpressed with an LBT, and phosphorylated and nonphosphorylated peptides were chemically synthesized with organic fluorophores. The LRET between the protein-bound Tb(III) and the peptide-based organic fluorophore was shown to be specific for the recognition of the SH2 domain and the peptide binding partner. This method can detect differences in binding affinity and can be used to measure the dissociation constant for the protein-peptide interaction. In addition, decay experiments can be used to calculate the distance between a site in the bound peptide and the protein using F?rster theory. In all of these experiments, the millisecond luminescence lifetime of Tb(III) can be exploited using time-resolved detection to eliminate background fluorescence from organic fluorophores.  相似文献   

15.
Turnip yellow mosaic virus (TYMV) is an icosahedral plant virus with an average diameter of 28 nm and can be isolated in gram quantities from turnip or Chinese cabbage inexpensively. In this study, it was selected as a prototype bionanoparticle for time-resolved fluoroimmuno assay (TRFIA). Two types of reactive amino acid residues were employed to anchor luminescent terbium complexes and biotin groups based on orthogonal chemical reactions. While terbium complexes were used as luminescent signaling groups, biotin motifs acted as a model ligand for protein binding. The bioconjugation results were confirmed by MS and Western blot analysis. Steady-state and time-resolved luminescence study of the dual-modified viruses demonstrated that the spectroscopic properties of the Tb complex are unperturbed by the labeling procedure. The dual-modified particle was probed by fluorescence resonance energy transfer (FRET) experiments using avidin labeled with an Alexa488 fluorophore, which bound to the biotin on the surface of the particle, as an energy acceptor, and terbium complexes as an energy donor. The emission and excitation spectra of the dual-labeled TYMV particle displayed residual virus fluorescence and Tb luminescence upon ligand-centered excitation. The Tb luminescence lifetime was 1.62 ms and could be effectively fitted with a single-exponential behavior. In the TRFIA, an efficient transfer of 66% was observed, and the calculation using the F?rster radius of 41 A allowed for an estimation of the average donor-acceptor distance of 36 A. Our studies show that the two reactive sites can communicate with each other on the surface of a nanoscale biological assembly. In particular, the ligand-receptor binding (biotin and avidin in this paper) was not interfered with when anchored to the surface of TYMV. Therefore, as a prototype of polyvalent bionanoparticles, TYMV can be used as scaffold for sensor development with TRFIA.  相似文献   

16.
The luminescence parameters of Eu(III) and Tb(III) complexes with fluorinated amide derivatives of hydroxyquinoline carboxylic acid (L1–8) were studied. It was shown that medicinal preparations, salts of organic bases, can be determined from the effect of their anions on the luminescence of Eu(III)-sensitizing ligand complexes. The Eu(III)-L1-citrate ion and Eu(III)-L2-tartrate ion complexes were proposed for the luminescence determination of clomiphene and tamoxifen citrates and platyphyllin tartrate, respectively. The detection limits were 0.30 μg/mL for clomifene (tamoxifen) citrate and 0.85 μg/mL for platyphyllin tartrate.  相似文献   

17.
Dynamic quenching of Eu(III) and Tb(III) luminescence by inorganic anions as a detection method in ion chromatography was investigated. To obtain a high luminescence intensity, lanthanide(III) complexes are formed with ligands which make indirect excitation of the ions possible. Only a few anions (e.g., nitrite, chromate) induce efficient dynamic luminescence quenching. Chromate is an efficient quencher of Tb-acac luminescence. Samples of tap water and surface water, spiked with chromate, were injected into a high-performance liquid chromatographic system with post-column addition of the luminescent complex. In this way, a detection limit of 1.1 . 10(-7) M (13 ppb) of chromate could be obtained.  相似文献   

18.
Six complexes of rare earth nitrates (Ln=La, Sm, Eu, Gd, Tb, Dy) with a new amide type ligand, N-(naphthalen-2-yl)-N-phenyl-2-(quinolin-8-yloxy)acetamide (L) have been prepared and characterized by elemental analysis, conductivity measurements, IR and and 1H NMR spectra. Under excitation, Eu(III) and Sm(III) complexes exhibited strong red emissions. And the luminescence intensity of Sm(III) complex is higher than that of Eu(III) complex. Thus the Eu(III) and Sm(III) complexes are the potential light conversion agent. However, the Tb(III) and Dy(III) complexes cannot exhibit characteristic emissions of terbium and dysprosium ions, respectively. The results of phosphorescence spectrum show that the triplet-state energy level of the ligand matches better to the resonance level of Eu(III) than Tb(III) ion. In addition, the luminescence of the Eu(III) complex is also relatively strong in highly diluted tetrahydrofuran solution (2 x 10(-4)mol/L) compared with the powder. This is not only due to the solvate effects but also to the changes of the structure of the Eu(III) complex after being dissolved into the solvents. Furthermore, owing to the co-luminescence effect, the proper La(III) or Gd(III) doped Eu(III) complexes show stronger luminescence than the pure Eu(III) complex.  相似文献   

19.
Double insulating barrier tunnel emission electrodes were fabricated by adding a new pure aluminum layer upon oxidized aluminum electrodes by vacuum evaporation and thermally oxidizing the new aluminum layer in air at room temperature. Resulting Al/Al2O3/Al/Al2O3 electrodes allow the use of various aluminum alloys in the electrode body necessary for hardness or shaping ability of the electrode while obtaining the luminescence properties of pure aluminum oxide. During electrical excitation of luminescent labels by cathodic hot electron injection into aqueous electrolyte solution, the background noise is mainly based on high-field-induced solid-state electroluminescence and F-center luminescence of the outer aluminum oxide film. The more defect states and/or impurity centers the outer oxide film contains, the higher is the background emission intensity. The present electrode fabrication method provides a considerable improvement in signal-to-noise ratio for time-resolved electrochemiluminescence (TR-ECL) measurements when the original native oxide film of the electrode body contains luminescence centers displaying long-lived luminescence. The excellent performance of the present electrodes is demonstrated by extremely low-level detection of Tb(III) chelates, luminol, Pt(II) coproporphyrin and Tb(III) labels in an immunometric immunoassay by time-resolved electrochemiluminescence.  相似文献   

20.
The binding properties of trivalent metal ions to polyelectrolytes were investigated through the use of Tb(III) luminescence studies. The condensation of Tb(III) with the homopolymers poly(acrylic acid) and poly(methacrylic acid) was studied in detail. In addition, the 1 : 1 copolymers of maleic acid with ethylene, isobutene, and 2,4,4-trimethyl-1-pentene were also examined. The emission intensity of the 305 nm Tb(III) hypersensitive excitation band was found to correlate with the size of the alkyl group on the polymer chains. Tb(III) luminescence lifetime studies indicated that the metal ion binding site was equivalent over a wide range of Tb(III)/polymer ratios. The number of solvent molecules coordinated by Tb(III) in the various polymer complexes was determined and found to range between 3.5 and 4 molecules of water of hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号