首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dissociation and formation of water on the Rh(111) and Ni(111) surfaces have been studied using density functional theory with generalized gradient approximation and ultrasoft pseudopotentials. Calculations have been performed on 2x2 surface unit cells, corresponding to coverages of 0.25 ML, with spot checks on 3x3 surface unit cells (0.11 ML). On both surfaces, the authors find that water adsorbs flat on top of a surface atom, with binding energies of 0.35 and 0.25 eV, respectively, on Rh(111) and Ni(111), and is free to rotate in the surface plane. Barriers of 0.92 and 0.89 eV have to be overcome to dissociate the molecule into OH and H on the Rh(111) and Ni(111) surfaces, respectively. Further barriers of 1.03 and 0.97 eV need to be overcome to dissociate OH into O and H. The barriers for the formation of the OH molecule from isolated adsorbed O and H are found to be 1.1 and 1.3 eV, and the barriers for the formation of the water molecule from isolated adsorbed OH and H are 0.82 and 1.05 eV on the two surfaces. These barriers are found to vary very little as coverage is changed from 0.25 to 0.11 ML. The authors have also studied the dissociation of OH in the presence of coadsorbed H or O. The presence of a coadsorbed H atom only weakly affects the energy barriers, but the effect of O is significant, changing the dissociation barrier from 1.03 to 1.37 and 1.15 eV at 0.25 or 0.11 ML coverage on the Rh(111) surface. Finally, the authors have studied the dissociation of water in the presence of one O atom on Rh(111), at 0.11 ML coverage, and the authors find a barrier of 0.56 eV to dissociate the molecule into OH+OH.  相似文献   

2.
We applied periodic density-functional theory (DFT) to investigate the dehydrogenation of ethanol on a Rh/CeO2 (111) surface. Ethanol is calculated to have the greatest energy of adsorption when the oxygen atom of the molecule is adsorbed onto a Ce atom in the surface, relative to other surface atoms (Rh or O). Before forming a six-membered ring of an oxametallacyclic compound (Rh-CH2CH2O-Ce(a)), two hydrogen atoms from ethanol are first eliminated; the barriers for dissociation of the O-H and the beta-carbon (CH2-H) hydrogens are calculated to be 12.00 and 28.57 kcal/mol, respectively. The dehydrogenated H atom has the greatest adsorption energy (E(ads) = 101.59 kcal/mol) when it is adsorbed onto an oxygen atom of the surface. The dehydrogenation continues with the loss of two hydrogens from the alpha-carbon, forming an intermediate species Rh-CH2CO-Ce(a), for which the successive barriers are 34.26 and 40.84 kcal/mol. Scission of the C-C bond occurs at this stage with a dissociation barrier Ea = 49.54 kcal/mol, to form Rh-CH(2(a)) + 4H(a) + CO(g). At high temperatures, these adsorbates desorb to yield the final products CH(4(g)), H(2(g)), and CO(g).  相似文献   

3.
CO oxidation on Ru(0001), Rh(111), Pd(111), Os(0001), Ir(111), Pt(111), and their corresponding metal oxides is studied using density functional theory. It is found that (i) the reactivity of metal oxide is generally higher than that of the corresponding metal, and (ii) on both metals and metal oxides, the higher the chemisorption energy is in the initial state, the larger the reaction barrier. The barriers are further analyzed by decomposing them into electronic and geometric effects, and the higher reactivity of metal oxides is attributed mainly to the surface geometric effect. Moreover, the electronic effect on both metals and metal oxides follows the same pattern: the shorter the OC-O bond distance in the TS, the higher the barrier.  相似文献   

4.
The dehydrogenation reaction of methanol on a Rh(111) surface, a Rh(111)V subsurface alloy, and on a Rh(111)V islands surface has been studied by thermal-desorption spectroscopy, reflection absorption infrared spectroscopy, and density-functional theory calculations. The full monolayer of methanol forms a structure with a special geometry with methanol rows, where two neighboring molecules have different oxygen-rhodium distances. They are close enough to form a H-bonded bilayer structure, with such a configuration, where every second methanol C-O bond is perpendicular to the surface on both Rh(111) and on the Rh(111)V subsurface alloy. The Rh(111)V subsurface alloy is slightly more reactive than the Rh(111) surface which is due to the changes in the electronic structure of the surface leading to slightly different methanol species on the surface. The Rh(111)V islands surface is the most reactive surface which is due to a new reaction mechanism that involves a methanol species stabilized up to about 245 K, partial opening of the methanol C-O bond, and dissociation of the product carbon monoxide. The latter two reactions also lead to a deactivation of the Rh(111)V islands surface.  相似文献   

5.
To predict where a catalytic reaction should occur is a fundamental issue scientifically. Technologically, it is also important because it can facilitate the catalyst's design. However, to date, the understanding of this issue is rather limited. In this work, two types of reactions, CH(4) <--> CH(3) + H and CO <--> C + O on two transition metal surfaces, were chosen as model systems aiming to address in general where a catalytic reaction should occur. The dissociations of CH(4) --> CH(3) + H and CO --> C + O and their reverse reactions on flat, stepped, and kinked Rh and Pd surfaces were studied in detail. We find the following: First, for the CH(4) <--> Ch(3) + H reaction, the dissociation barrier is reduced by approximately 0.3 eV on steps and kinks as compared to that on flat surfaces. On the other hand, there is essentially no difference in barrier for the association reaction of CH(3) + H on the flat surfaces and the defects. Second, for the CO <--> C + O reaction, the dissociation barrier decreases dramatically (more than 0.8 eV on Rh and Pd) on steps and kinks as compared to that on flat surfaces. In contrast to the CH(3) + H reaction, the C + O association reaction also preferentially occurs on steps and kinks. We also present a detailed analysis of the reaction barriers in which each barrier is decomposed quantitatively into a local electronic effect and a geometrical effect. Our DFT calculations show that surface defects such as steps and kinks can largely facilitate bond breaking, while whether the surface defects could promote bond formation depends on the individual reaction as well as the particular metal. The physical origin of these trends is identified and discussed. On the basis of our results, we arrive at some simple rules with respect to where a reaction should occur: (i) defects such as steps are always favored for dissociation reactions as compared to flat surfaces; and (ii) the reaction site of the association reactions is largely related to the magnitude of the bonding competition effect, which is determined by the reactant and metal valency. Reactions with high valency reactants are more likely to occur on defects (more structure-sensitive), as compared to reactions with low valency reactants. Moreover, the reactions on late transition metals are more likely to proceed on defects than those on the early transition metals.  相似文献   

6.
The adsorption of atomic oxygen and carbon was studied with plane wave density functional theory on four Ni surfaces, Ni(110), Ni(111), Ni(210), and Ni(531). Various adsorption sites on these surfaces are examined in order to identify the most favorable adsorption site for each atomic species. The dependence of surface bonding on adsorbate coverage is also investigated. Adsorption energies and structural information are obtained and compared with existing experimental results for Ni(110) and Ni(111). In addition, activation barriers to CO dissociation have been determined on Ni(111) and Ni(531) by locating the transition states for these processes. Our results indicate that the binding energies of C are comparatively stronger on stepped surfaces than on flat surfaces, and the energy barriers associated with CO dissociation strongly favor reactions occurring near surface steps.  相似文献   

7.
We investigate by density-functional theory simulations several elementary reactions associated to direct methane-to-methanol conversion on clean Rh(111) surfaces and on Rh adatoms on Rh(111). Energy barriers and reaction paths have been determined by the nudged elastic band method. The rate-limiting step in the process, C-O bond formation, has higher activation energy than the one for complete methane dehydrogenation. Our analysis enables us to understand the effect of defects on the reactivity and rules out Rh as candidate catalyst for methanol synthesis.  相似文献   

8.
Adsorption and reactions of NO over the clean and CO-preadsorbed Ir(111) and Rh(111) surfaces were investigated using infrared reflection absorption spectroscopy (IRAS) and temperature programmed desorption (TPD). Two NO adsorption states, indicative of hollow and atop sites, were present on Ir(111). Only NO adsorbed on hollow sites dissociated to Na and Oa. The dissociated Na desorbed as N2 by recombination of Na and by a disproportionation reaction between atop-NO and Na. Preadsorbed CO inhibited atop-NO, whereas hollow-NO was not affected. Adsorbed CO reacted with Oa and desorbed as CO2. NO adsorbed on the fcc-hollow, atop, and hcp-hollow sites in that order over Rh(111). The hcp-NO was inhibited by preadsorbed atop-CO, and fcc-NO and atop-NO were inhibited by CO preadsorbed on each type of the sites, indicating that NO and CO competitively adsorbed on Rh(111). From the Rh(111) surface-coadsorbed NO and CO, N2 was produced by fcc-NO dissociation, and CO2 was formed by reaction of adsorbed CO with Oa from dissociated fcc-NO.  相似文献   

9.
The adsorption of phenol on flat and stepped Pt and Rh surfaces and the dissociation of hydrogen from the hydroxyl group of phenol on Pt(111) and Rh(111) were studied by density functional calculations. On both Pt(111) and Rh(111), phenol adsorbs with the aromatic ring parallel to the surface and the hydroxyl group tilted away from the surface. Furthermore, adsorption on stepped surfaces was concluded to be unfavourable compared to the (111) surfaces due to the repulsion of the hydroxyl group from the step edges. Transition state calculations revealed that the reaction barriers, associated with the dissociation of phenol into phenoxy, are almost identical on Pt and Rh. Furthermore, the oxygen in the dissociated phenol is strongly attracted by Rh(111), while it is repelled by Pt(111).  相似文献   

10.
The dehydrogenation of methanol on Rh(111), on a Rh(111)/V subsurface alloy and on Rh(111) with V islands has been studied with and without preadsorbed oxygen using a supersonic molecular beam and temperature programmed desorption. The reactivity is highest for the V islands surface without oxygen. But this surface is deactivated due to CO dissociation. The subsurface alloy is less reactive than the islands, but still more active than the Rh(111) surface. The reaction products are carbon monoxide and hydrogen only. With preadsorbed oxygen Rh(111) is the most active surface, but a strong dependence of the activity on the amount of preadsorbed oxygen is found for all three surfaces. The reaction products with preadsorbed oxygen are water, hydrogen, carbon dioxide and carbon monoxide. The reactions follow the same mechanism on all surfaces, but the activation energy of the individual reaction steps is different leading to significant changes in the thermal desorption spectra and in King and Wells-type experiments.  相似文献   

11.
In CO hydrogenation over Rh/SiO2 catalysts, the effect of additive metal oxides on C-O bond dissociation was studied by using pulse surface reaction rate analysis (PSRA). The addition of oxides of Al, Ti, Cr, V, and Mn resulted in an increase in the rate constant for the dissociation according to this sequence, while the oxides of Cu, Zn, and Ag added decreased the rate constant to almost the same extent. In contrast to these metal oxides, MoO3 and WO3 did not change the dissociation activity. CO adsorption measurement indicated that all of the added metal oxides covered a considerable portion of the Rh metal surface, although the efficiency of covering was different from one metal oxide to another. Covering the Rh metal surface with an added metal oxide should decrease the rate constant of C-O bond dissociation, because ensemble sites, consisting of a group of surface Rh atoms and considered necessary for the dissociation, were destroyed. The suppression effect resulted from the destruction of the ensemble sites by adding the oxides of Cu, Zn, and Ag. For other metal oxides, temperature-programmed reduction (TPR) or O2 uptake measurement revealed that the added oxides, especially those existing on the Rh metal surface, were in a partially reduced state under reaction conditions. Owing to its high affinity for an oxygen atom, the cation in a partially reduced state participated in the reaction in such a way that the oxygen end of adsorbed CO species was bound to the cation so as to dissociate the C-O bond, which resulted in promotion of the dissociation. The observed promotion was explained in terms of the enhancement owing to the high affinity sufficient to overcome the suppression caused by destroying ensemble sites. Lack of the promotion effect of MoO3 and WO3 might result from a balance between promotion due to the high affinity of the partially reduced Mo or W and suppression caused by destroying ensemble sites. Excellent correlation was observed between the intrinsic activity increase, from which the suppression effect was excluded, and the heat of formation of metal oxide including MoO3 and WO3. Since the heat of formation of metal oxide is considered to be a measure of the affinity, this correlation supports the idea that the high affinity of additive cations for an oxygen atom is of primary importance in the promotion of C-O bond dissociation in CO hydrogenation.  相似文献   

12.
Hydrogen oxidation on Pt (111) surface is modeled by density functional theory (DFT). Previous DFT calculations showed too large O2 dissociation barriers, but we find them highly coverage dependent: when the coverage is low, dissociation barriers close to experimental values (approximately 0.3 eV) are obtained. For the whole reaction, a new pathway involving hydroperoxyl (OOH) intermediate is found, with the highest reaction barrier of only approximately 0.4 eV. This may explain the experimental observation of catalytic water formation on Pt (111) surface above the H2O desorption temperature of 170 K, despite that the direct reaction between chemisorbed O and H atoms is a highly activated process with barrier approximately 1 eV as previous calculations showed.  相似文献   

13.
The reaction between adsorbed CO and atomic O on various sites of Rh(111) and on the bimetallic RhCu(111) surface has been investigated by first principles density functional theory using slab models. The most likely reaction pathway for CO oxidation on Rh(111) involves probably migration of atomic oxygen from fcc to hcp sites. On the bimetallic surface the mechanism is similar, although depending on the type of bimetallic site a reduction of the energy barrier is predicted. Consequences for the NO reduction by CO reaction are analyzed.  相似文献   

14.
The reactivity of iron nanocluster arrays on h-BN/Rh(111) was studied using in situ high-resolution X-ray photoelectron spectroscopy. The morphology and reactivity of the iron nanoclusters (Fe-NCs) were investigated by CO adsorption. On-top and hollow/edge sites were determined to be the available adsorption sites on the as-prepared Fe-NCs and CO dissociation was observed at 300 K. C- and O-precovered Fe-NCs showed no catalytic activity towards CO dissociation because the hollow/edge sites were blocked by the C and O atoms. Therefore, these adsorption sites were identified to be the most active sites of the Fe-NCs.  相似文献   

15.
Gold-based catalysts have been of intense interests in recent years, being regarded as a new generation of catalysts due to their unusually high catalytic performance. For example, CO oxidation on Au/TiO(2) has been found to occur at a temperature as low as 200 K. Despite extensive studies in the field, the microscopic mechanism of CO oxidation on Au-based catalysts remains controversial. Aiming to provide insight into the catalytic roles of Au, we have performed extensive density functional theory calculations for the elementary steps in CO oxidation on Au surfaces. O atom adsorption, CO adsorption, O(2) dissociation, and CO oxidation on a series of Au surfaces, including flat surfaces, defects and small clusters, have been investigated in detail. Many transition states involved are located, and the lowest energy pathways are determined. We find the following: (i) the most stable site for O atom on Au is the bridge site of step edge, not a kink site; (ii) O(2) dissociation on Au (O(2)-->2O(ad)) is hindered by high barriers with the lowest barrier being 0.93 eV on a step edge; (iii) CO can react with atomic O with a substantially lower barrier, 0.25 eV, on Au steps where CO can adsorb; (iv) CO can react with molecular O(2) on Au steps with a low barrier of 0.46 eV, which features an unsymmetrical four-center intermediate state (O-O-CO); and (v) O(2) can adsorb on the interface of Au/TiO(2) with a reasonable chemisorption energy. On the basis of our calculations, we suggest that (i) O(2) dissociation on Au surfaces including particles cannot occur at low temperatures; (ii) CO oxidation on Au/inactive-materials occurs on Au steps via a two-step mechanism: CO+O(2)-->CO(2)+O, and CO+O-->CO(2); and (iii) CO oxidation on Au/active-materials also follows the two-step mechanism with reactions occurring at the interface.  相似文献   

16.
The efficiency of PtSn alloy surfaces toward CO oxidation is demonstrated from first-principles theory. Oxidation kinetics based on atomistic density-functional theory calculations shows that the Pt3Sn surface alloy exhibits a promising catalytic activity for fuel cells. At room temperature, the corresponding rate outstrips the activity of Pt(111) by several orders of magnitude. According to the oxidation pathways, the activation barriers are actually lower on Pt3Sn(111) and Pt3Sn/Pt(111) surfaces than on Pt(111). A generalization of Hammer's model is proposed to elucidate the key role of tin on the lowering of the barriers. Among the energy contributions, a correlation is evidenced between the decrease of the barrier and the strengthening of the attractive interaction energy between CO and O moieties. The presence of tin modifies also the symmetry of the transition states which are composed of a CO adsorbate on a Pt near-top position and an atomic O adsorption on an asymmetric mixed PtSn bridge site. Along the reaction pathways, a CO2 chemisorbed surface intermediate is obtained on all the surfaces. These results are supported by a thorough vibrational analysis including the coupling with the surface phonons which reveals the existence of a stretching frequency between the metal substrate and the CO2 molecule.  相似文献   

17.
Supersonic molecular beams have been used to determine the yield of CO from the partial oxidation of CH4 on a Rh111 catalytic substrate, CH4+12O2-->CO+2H2, as a function of beam kinetic energy. These experiments were done under ultrahigh vacuum conditions with concurrent molecular beams of O2 and CH4, ensuring that there was only a single collision for the CH4 to react with the surface. The fraction of CH4 converted is strongly dependent on the normal component of the incident beam's translational energy, and approaches unity for energies greater than approximately 1.3 eV. Comparison with a simplified model of the methane-Rh111 reactive potential gives insight into the barrier for methane dissociation. These results demonstrate the efficient conversion of methane to synthesis gas, CO+2H2, are of interest in hydrogen generation, and have the optimal stoichiometry for subsequent utilization in synthetic fuel production (Fischer-Tropsch or methanol synthesis). Moreover, under the reaction conditions explored, no CO2 was detected, i.e., the reaction proceeded with the production of very little, if any, unwanted greenhouse gas by-products. These findings demonstrate the efficacy of overcoming the limitations of purely thermal reaction mechanisms by coupling nonthermal mechanistic steps, leading to efficient C-H bond activation with subsequent thermal heterogeneous reactions.  相似文献   

18.
Ethanol adsorption, desorption and decomposition on Rh(111) have been studied by X-ray photoelectron spectroscopy and tem-perature-programmed desorption experiments. The evolution of the C is and O is core level spectra was monitored as a function of ethanol exposure and surface temperature. Ethanol adsorption at 90 K results in two nonequivalent ethanol-adsorbed species at low surface coverage, while a third species--related to multilayer formation--appears after longer exposures. Upon surface annealing, ethanol undergoes both desorption and dissociation, thus creating intermediate surface species which further decompose to hydrogen, carbon monoxide and atomic carbon. Our results clearly show that C--C bond cleavage is the preferential dissociation channel, while C--O bond scission is not observed. Calculations performed within the framework of the unity bond index-quadratic exponent potential model, have been used to test and compare different competing dissociation channels, providing an estimate of adsorption energies and dissociation barriers.  相似文献   

19.
The adsorption and dissociation of carbon monoxide on the W(111) surface is studied with density functional theory. The CO molecule is found to adsorb in end-on configurations (alpha states) and inclined configurations (beta states). The dissociation of the most strongly bound beta state CO is found to have an activation energy of about 0.8 eV, which is lower than the energy required to desorb CO molecularly from the surface. The diffusion of CO and O on W(111) is predicted to be facile at room temperature, whereas C atoms are virtually immobile up to approximately 600 K, according to our calculations. Preadsorbed carbon atoms are shown to prevent the dissociation of CO by blocking the most strongly bound beta state adsorption site and by blocking the dissociation pathway. We predict that dissociation of CO on W(111) is a self-poisoning process.  相似文献   

20.
傅钢  吕鑫  徐昕  万惠霖 《分子催化》2001,15(6):484-486
应用UBI-QEP方法, 估算了CO2-在金属表面的吸附热, 并计算了CO2在Cu(111)、Pd(111)、Fe(111)、Ni(111)表面的各种反应途径的活化能垒. 结果表明, CO2-在4种过渡金属表面相对的稳定性和CO2解离吸附的活性顺序一致,均为Fe>Ni>Cu>Pd. 说明CO2-可能是CO2解离吸附的关键中间体. 在Cu、Pd、Ni表面上, CO2解离吸附的最终产物是CO,而在Fe表面其最终会解离成C和O. 在Cu、Fe、Ni表面, CO2加氢活化是一种有效模式, 而在Pd上则不容易进行. 在Cu和Pd表面,碳酸盐物种也可能是CO2活化的重要中间体.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号