首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Legendre Galerkin Chebyshev collocation least squares method is presented for a second‐order elliptic problem with variable coefficients. By introducing a flux variable, the original problem is rewritten as an equivalent first‐order system. The present method is based on the Legendre Galerkin method, but Chebyshev–Gauss–Lobatto collocation is used to deal with the variable coefficient and the right hand side terms. The coercivity and continuity of the method are proved and an error estimate in the ‐norm is derived. Some numerical examples are given to validate the efficiency and accuracy of the scheme. © 2016Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1689–1703, 2016  相似文献   

2.
对带非局部边界条件的热方程的初边值问题提出了LEGENDRE配置法,并给出其半离散逼近和全离散逼近的稳定性和收敛性分析.数值试验验证了方法的有效性.  相似文献   

3.
By introducing a stress multiplier we derive a family of Burgers-like equations. We investigate the blow-up phenomena of the equations both on the real line R and on the circle S to get a comparison with the Degasperis-Procesi equation. On the line R, we first establish the local well-posedness and the blow-up scenario. Then we use conservation laws of the equations to get the estimate for the L-norm of the strong solutions, by which we prove that the solutions to the equations may blow up in the form of wave breaking for certain initial profiles. Analogous results are provided in the periodic case. Especially, we find differences between the Burgers-like equations and the Degasperis-Procesi equation, see Remark 4.1.  相似文献   

4.
The Chebyshev‐Legendre spectral method for the two‐dimensional vorticity equations is considered. The Legendre Galerkin Chebyshev collocation method is used with the Chebyshev‐Gauss collocation points. The numerical analysis results under the L2‐norm for the Chebyshev‐Legendre method of one‐dimensional case are generalized into that of the two‐dimensional case. The stability and optimal order convergence of the method are proved. Numerical results are given. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2009  相似文献   

5.
Advection equations with delay are appeared in the modeling of the dynamics of structured cell populations. In this article, we construct an efficient two-dimensional multistep collocation method for the numerical solution of a class of advection equations with delay. Equations with aftereffect and equations with both aftereffect and retardation of a state variable are considered. Computability of the algorithm and convergence properties of the proposed numerical method are analyzed for solutions in appropriate Sobolev spaces, and it is shown that the proposed scheme enjoys the spectral accuracy. Numerical examples are given and comparison with other existing methods in the literature is made to demonstrate the efficiency, superiority and high accuracy of the presented method.  相似文献   

6.
The Legendre spectral Galerkin method for the Volterra integral equations of the second kind is proposed in this paper. We provide a rigorous error analysis for the proposed method, which indicates that the numerical errors (in the L 2 norm) will decay exponentially provided that the kernel function and the source function are sufficiently smooth. Numerical examples are given to illustrate the theoretical results.   相似文献   

7.
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.  相似文献   

8.
A collocation method to find an approximate solution of higher‐order linear ordinary differential equation with variable coefficients under the mixed conditions is proposed. This method is based on the rational Chebyshev (RC) Tau method and Taylor‐Chebyshev collocation methods. The solution is obtained in terms of RC functions. Also, illustrative examples are included to demonstrate the validity and applicability of the technique, and performed on the computer using a program written in maple9. © 2010 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 1130–1142, 2011  相似文献   

9.
In this paper, an improved Legendre collocation method is presented for a class of integro-differential equations which involves a population model. This improvement is made by using the residual function of the operator equation. The error differential equation, gained by residual function, has been solved by the Legendre collocation method (LCM). By summing the approximate solution of the error differential equation with the approximate solution of the problem, a better approximate solution is obtained. We give the illustrative examples to demonstrate the efficiency of the method. Also we compare our results with the results of the known some methods. In addition, an application of the population model is made.  相似文献   

10.
11.
In this work we develop a variety of Burgers-like equations. We show that these derived equations share some of the travelling wave solutions of the Burgers equation, and differ in some other solutions.  相似文献   

12.
In this article, we present a new numerical method to solve the integro-differential equations (IDEs). The proposed method uses the Legendre cardinal functions to express the approximate solution as a finite series. In our method the operational matrix of derivatives is used to reduce IDEs to a system of algebraic equations. To demonstrate the validity and applicability of the proposed method, we present some numerical examples. We compare the obtained numerical results from the proposed method with some other methods. The results show that the proposed algorithm is of high accuracy, more simple and effective.  相似文献   

13.
By incorporating the Legendre multiwavelet into the discontinuous Galerkin (DG) method, this paper presents a novel approach for solving Poisson’s equation with Dirichlet boundary, which is known as the discontinuous Legendre multiwavelet element (DLWE) method, derive an adaptive algorithm for the method, and estimate the approximating error of its numerical fluxes. One striking advantage of our method is that the differential operator, boundary conditions and numerical fluxes involved in the elementwise computation can be done with lower time cost. Numerical experiments demonstrate the validity of this method. Furthermore, this paper generalizes the DLWE method to the general elliptic equations defined on a bounded domain and describes the possibilities of constructing optimal adaptive algorithm. The proposed method and its generalizations are also applicable to some other kinds of partial differential equations.  相似文献   

14.
This paper is concerned with obtaining the approximate solution for VolterraHammerstein integral equation with a regular kernel. We choose the Gauss points associated with the Legendre weight function ω(x) = 1 as the collocation points. The Legendre collocation discretization is proposed for Volterra-Hammerstein integral equation. We provide an error analysis which justifies that the errors of approximate solution decay exponentially in L~2 norm and L~∞ norm. We give two numerical examples in order to illustrate the validity of the proposed Legendre spectral collocation method.  相似文献   

15.
In this paper, the alternative Legendre polynomials (ALPs) are used to approximate the solution of a class of nonlinear multi-order fractional differential equations (FDEs). First, the operational matrix of fractional integration of an arbitrary order and the product operational matrix are derived for ALPs. These matrices together with the spectral Tau method are then utilized to reduce the solution of the mentioned equations into the one of solving a system of nonlinear algebraic equations with unknown ALP coefficients of the exact solution. The fractional derivatives are considered in the Caputo sense and the fractional integration is described in the Riemann-Liouville sense. Numerical examples illustrate that the present method is very effective for linear and nonlinear multi-order FDEs and high accuracy solutions can be obtained only using a small number of ALPs.  相似文献   

16.
A Discontinuous Galerkin method with interior penalties is presented for nonlinear Sobolev equations. A semi‐discrete and a family of fully‐discrete time approximate schemes are formulated. These schemes are symmetric. Hp‐version error estimates are analyzed for these schemes. For the semi‐discrete time scheme a priori L(H1) error estimate is derived and similarly, l(H1) and l2(H1) for the fully‐discrete time schemes. These results indicate that spatial rates in H1 and time truncation errors in L2 are optimal. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

17.
We introduce an orthogonal basis on the square [?1, 1] × [‐1, 1] generated by Legendre polynomials on [?1, 1], and define an associated expression for the expansion of a Riemann integrable function. We describe some properties and derive a uniform convergence theorem. We then present several numerical experiments that indicate that our methods are more efficient and have better convergence results than some other methods. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

18.
In this paper, we consider a least-squares method proposed by Bramble, Lazarov and Pasciak (1998) which can be thought of as a stabilized Galerkin method for noncoercive problems with unique solutions. We modify their method by weakening the strength of the stabilization terms and present various new error estimates. The modified method has all the desirable properties of the original method; indeed, we shall show some theoretical properties that are not known for the original method. At the same time, our numerical experiments show an improvement of the method due to the modification.

  相似文献   


19.
First‐order system least‐squares spectral collocation methods are presented for the Stokes equations by adopting the first‐order system and modifying the least‐squares functionals in 2 . Then homogeneous Legendre and Chebyshev (continuous and discrete) functionals are shown to be elliptic and continuous with respect to appropriate product weighted norms. The spectral convergence is analyzed for the proposed methods with some numerical experiments. © 2003 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 20: 128–139, 2004  相似文献   

20.
Second-kind Volterra integral equations with weakly singular kernels typically have solutions which are nonsmooth near the initial point of the interval of integration. Using an adaptation of the analysis originally developed for nonlinear weakly singular Fredholm integral equations, we present a complete discussion of the optimal (global and local) order of convergence of piecewise polynomial collocation methods on graded grids for nonlinear Volterra integral equations with algebraic or logarithmic singularities in their kernels.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号