首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 542 毫秒
1.
This paper presents a study on the deformation of anisotropic fibrous porous media subjected to moistening by water in the liquid phase. The deformation of the medium is studied by applying the concept of effective stress. Given the structure of the medium, the displacement of the solid matrix is not taken into account with respect to the displacement of the liquid phase. The transport equations are derived from the model proposed by Narasimhan. The transport coefficients and the relation between the variation in apparent density and effective stress are obtained by test measurements. A numerical model has been established and applied for studying drip moistening of mineral wool samples capable or incapable of deformation.Nomenclature D mass diffusion coefficient [L2t–1] - e void fraction - g gravity acceleration [Lt–2] - J mass transfer density [ML–2t–1] - K hydraulic conductivity [Lt–1] - K s hydraulic conductivity of the solid phase [Lt–1] - K * hydraulic conductivity of the deformable porous medium [Lt–1] - P pressure of moistening liquid [ML–1 t–2] - S degree of saturation - t time [t] - V speed [Lt–1] - X horizontal coordinate [L] - Z vertical coordinate measured from the bottom of porous medium [L] - z z-coordinate [L] Greek Letters porosity - 1 total hydric potential [L] - g gas density [ML–3] - 1 liquid density [ML–3] - 0 apparent density [ML–3] - s density of the solid phase [ML–3] - density of the moist porous medium [ML–3] - external load [ML–1t–2] - effective stress [ML–1t–2] - bishop's parameter - matrix potential or capillary suction [L] Indices g gas - 1 moistening liquid - p direction perpendicular to fiber planes - s solid matrix - t direction parallel to fiber planes - v pore Exponent * movement of solid particles taken into account  相似文献   

2.
Two-phase flows of boiling water and steam in geothermal reservoirs satisfy a pair of conservation equations for mass and energy which can be combined to yield a hyperbolic wave equation for liquid saturation changes. Recent work has established that in the absence of conduction, the geothermal saturation equation is, under certain conditions, asymptotically identical with the Buckley-Leverett equation of oil recovery theory. Here we summarise this work and show that it may be extended to include conduction. In addition we show that the geothermal saturation wave speed is under all conditions formally identical with the Buckley-Leverett wave speed when the latter is written as the saturation derivative of a volumetric flow.Roman Letters C(P, S,q) geothermal saturation wave speed [ms–1] (14) - c t (P, S) two-phase compressibility [Pa–1] (10) - D(P, S) diffusivity [m s–2] (8) - E(P, S) energy density accumulation [J m–3] (3) - g gravitational acceleration (positive downwards) [ms–2] - h w (P),h w (P) specific enthalpies [J kg–1] - J M (P, S,P) mass flow [kg m–2 s–1] (5) - J E (P, S,P) energy flow [J m–2s–1] (5) - k absolute permeability (constant) [m2] - k w (S),k s (S) relative permeabilities of liquid and vapour phases - K formation thermal conductivity (constant) [Wm–1 K–1] - L lower sheetC<0 in flow plane - m, c gradient and intercept - M(P, S) mass density accumulation [kg m–3] (3) - O flow plane origin - P(x,t) pressure (primary dependent variable) [Pa] - q volume flow [ms–1] (6) - S(x, t) liquid saturation (primary dependent variable) - S *(x,t) normalised saturation (Appendix) - t time (primary independent variable) [s] - T temperature (degrees Kelvin) [K] - T sat(P) saturation line temperature [K] - TdT sat/dP saturation line temperature derivative [K Pa–1] (4) - T c ,T D convective and diffusive time constants [s] - u w (P),u s (P),u r (P) specific internal energies [J kg–1] - U upper sheetC > 0 in flow plane - U(x,t) shock velocity [m s–1] - x spatial position (primary independent variable) [m] - X representative length - x, y flow plane coordinates - z depth variable (+z vertically downwards) [m] Greek Letters P , S remainder terms [Pa s–1], [s–1] - double-valued saturation region in the flow plane - h =h s h w latent heat [J kg–1] - = w s density difference [kg m–3] - line envelope - =D K /D 0 diffusivity ratio - porosity (constant) - w (P), s (P), t (P, S) dynamic viscosities [Pa s] - v w (P),v s (P) kinematic viscosities [m2s–1] - v 0 =kh/KT kinematic viscosity constant [m2 s–1] - 0 =v 0 dynamic viscosity constant [m2 s–1] - w (P), s (P) density [kg m–3] Suffixes r rock matrix - s steam (vapour) - w water (liquid) - t total - av average - 0 without conduction - K with conduction  相似文献   

3.
Convective heat transfer properties of a hydrodynamically fully developed flow, thermally developing flow in a parallel-flow, and noncircular duct heat exchanger passage subject to an insulated boundary condition are analyzed. In fact, due to the complexity of the geometry, this paper investigates in detail heat transfer in a parallel-flow heat exchanger of equilateral-triangular and semicircular ducts. The developing temperature field in each passage in these geometries is obtained seminumerically from solving the energy equation employing the method of lines (MOL). According to this method, the energy equation is reformulated by a system of a first-order differential equation controlling the temperature along each line.Temperature distribution in the thermal entrance region is obtained utilizing sixteen lines or less, in the cross-stream direction of the duct. The grid pattern chosen provides drastic savings in computing time. The representative curves illustrating the isotherms, the variation of the bulk temperature for each passage, and the total Nusselt number with pertinent parameters in the entire thermal entry region are plotted. It is found that the log mean temperature difference (T LM), the heat exchanger effectiveness, and the number of transfer units (NTU) are 0.247, 0.490, and 1.985 for semicircular ducts, and 0.346, 0.466, and 1.345 for equilateral-triangular ducts.
Konvektiver Wärmeübergang im thermischen Einlaufgebiet von Gleichstromwärmetauschern mit nichtkreisförmigen Strömungskanälen
Zusammenfassung Die Untersuchung bezieht sich auf das konvektive Wärmeübertragungsverhalten eines Gleichstromwärmetauschers mit nichtkreisförmigen Strömungskanälen bei hydraulisch ausgebildetet, thermisch einlaufender Strömung unter Aufprägung einer adiabaten Randbedingung. Zwei Fälle komplizierter Geometrie, nämlich Kanäle mit gleichseitig dreieckigen und halbkreisförmigen Querschnitten, werden bezüglich des Wärmeübergangsverhaltens bei Gleichstromführung eingehend analysiert. Das sich entwickelnde Temperaturfeld in jedem Kanal von der eben spezifizierten Querschnittsform wird halbnumerisch durch Lösung der Energiegleichung unter Einsatz der Linienmethode (MOL) erhalten. Dieser Methode entsprechend erfolgt eine Umformung der Energiegleichung in ein System von Differentialgleichungen erster Ordnung, welches die Temperaturverteilung auf jeder Linie bestimmt.Die Temperaturverteilung im Einlaufgebiet wird unter Vorgabe von 16 oder weniger Linien über dem Kanalquerschnitt erhalten, wobei die gewählte Gitteranordnung drastische Einsparung an Rechenzeit ergibt. Repräsentative Kurven für das Isothermalfeld, den Verlauf der Mischtemperatur für jeden Kanal und die Gesamt-Nusseltzahl als Funktion relevanter Parameter im gesamten Einlaufgebiet sind in Diagrammform dargestellt. Es zeigt sich, daß die mittlere logarithmische Temperaturdifferenz (T LM), der Wärmetauscherwirkungsgrad und die Anzahl der Übertragungseinheiten (NTU) folgende Werte annehmen: 0,247, 0,490 und 1,985 für halbkreisförmige Kanäle sowie 0,346, 0,466 und 1,345 für gleichseitig dreieckige Kanäle.

Nomenclature A cross sectional area [m2] - a characteristic length [m] - C c specific heat of cold fluid [J kg–1 K–1] - C h specific heat of hot fluid [J kg–1 K–1] - C p specific heat [J kg–1 K–1] - C r specific heat ratio,C r=C c/Ch - D h hydraulic diameter of duct [m] - f friction factor - k thermal conductivity of fluid [Wm–1 K–1] - L length of duct [m] - m mass flow rate of fluid [kg s–1] - N factor defined by Eq. (20) - NTU number of transfer units - Nu x, T local Nusselt number, Eq. (19) - P perimeter [m] - p pressure [KN m–2] - Pe Peclet number,RePr - Pr Prandtl number,/ - Q T total heat transfer [W], Eq. (13) - Q ideal heat transfer [W], Eq. (14) - Re Reynolds number,D h/ - T temperature [K] - T b bulk temperature [K] - T e entrance temperature [K] - T w circumferential duct wall temperature [K] - u, U dimensional and dimensionless velocity of fluid,U=u/u - , dimensional and dimensionless mean velocity of fluid - w generalized dependent variable - X dimensionless axial coordinates,X=D h 2 /a 2 x* - x, x* dimensional and dimensionless axial coordinate,x*=x/D hPe - y, Y dimensional and dimensionless transversal coordinates,Y=y/a - z, Z dimensional and dimensionless transversal coordinates,Z=z/a Greek symbols thermal diffusivity of fluid [m2 s–1] - * right triangular angle, Fig. 2 - independent variable - T LM log mean temperature difference of heat exchanger - effectiveness of heat exchanger - generalized independent variable - dimensionless temperature - b dimensionless bulk temperature - dynamic viscosity of fluid [kg m–1 s–1] - kinematic viscosity of fluid [m2 s–1] - density of fluid [kg m–3] - heat transfer efficiency, Eq. (14) - generalized dependent variable  相似文献   

4.
Zusammenfassung Die Meßergebnisse für die Wärmeleitfähigkeit von Stickstoff bei Temperaturen zwischen 1230 und 6000 K und Drückenzwischen 1 und 10 bar und von Kohlenmonoxid zwischen 1150 und 5000 K bei 1 bar werden mitgeteilt. Diese mit dem Stoßwellenrohr gemessenen Werte werden mit jenen verglichen, die sich aus der strengen kinetischen Gastheorie ergeben. Auch verfügbare Daten anderer Autoren werden zum Vergleich herangezogen.
Measurement of thermal conductivity of nitrogen and carbon monoxide at high temperatures in a shock tube
The paper presents results of shock-tube measurements of thermal conductivity of nitrogen at temperatures between 1230 and 6000 K and at pressures between 1 and 10 bar and of carbon monoxide at temperatures between 1150 and 5000 K at 1 bar. Experimental results are compared with several variants of theoretical values, computed from rigorous kinetic theory, and with available data of other authors.

Bezeichnungen (Einheiten in Klammern) a [m2 s–1] Temperaturleitzahl - C p[J mol–1 K–1] molare Wärmekapazität - k [J K–1] Boltzmann-Konstante - M [kg mol–1] molare Masse - p bar Gesamtdruck - R [J mol–1 K–1] Gaskonstante - T [K] thermodynamische Temperatur - t [s] Zeit - U [J mol–1] innere Energie - w [m s–1] Geschwindigkeit - x [m] Ortskoordinate - x i [1] Molanteil der Komponentei im Gasgemisch - [Wm–1 K–1] Wärmeleitfähigkeit - [mol m–3] molare Konzentration Indizes i die Komponentei im Gasgemisch - g bezieht sich auf das (kalte) Gas bei der Wandtemperatur - w bezieht sich auf die feste Wand - p bei konstantem Druck Dieser Beitrag wurde auf dem Thermodynamik-Kolloquium des VDI im Oktober 1969 in Zürich vorgetragen.  相似文献   

5.
Zusammenfassung In der vorliegenden Arbeit wird ein neues Rotationsrheometer vorgestellt und über Messungen an zwei Polymethylmethacrylat-Formmassen berichtet. Bei dem Rheometer handelt es sich um ein Couette-Rheometer mit feststehendem Innenzylinder als Meßkörper. Der Meßkörper ist beidseitig eingespannt. In dem geschlossenen Meßraum können die Schmelzen bis zu einem Druck von 500 bar belastet werden.Der zeitliche Verlauf der Schubspannung in den Schmelzen wird in Abhängigkeit von Temperatur und Druck aufgezeichnet.
Summary A new type of rotational rheometer is described, and results for two samples of polymethylmethacrylate are reported. The rheometer consists of a Couette system with fixed inner cylinder, supported at both ends for torque measurements. Pressure may be varied up to 500 bar. Shear stresses have been recorded as a function of time, temperature and pressure.

Nomenklatur C [kp cm–2 s–1] Steigung der Anlaufkurve im Nullpunkt - D [kp cm rad–1] Direktionsmoment - E 0 [kcal mol–1] Aktivierungsenergie der Newtonschen Viskosität - G [kp cm–2] Schubmodul - G [—] Griffith-Zahl - l [mm] Länge des Meßkörpers - p [kp cm–2] Druck - R i [mm] Radius des Innenzylinders - R a [mm] Radius des Außenzylinders - t max [s] Zeit, bei der das Maximum in der Anlaufkurve auftritt - T [°C] Temperatur - 0 [cm2 kp–1] Druckkoeffizient der Newtonschen Viskosität - [s–1] Schergeschwindigkeit - 0 [kp s cm–2] Newtonsche Viskosität - (g cm2] Trägheitsmoment des Meßkörpers - v 0 [s–1] Eigenfrequenz des Meßsystems - max [kp cm–2] maximale Schubspannung - st [kp cm–2] stationäre Schubspannung Mit 7 Abbildungen und 1 Tabelle  相似文献   

6.
Zusammenfassung Es wird eine modifizierte Form des Weissenberg-Effekts untersucht, wobei sich die viskoelastische Flüssigkeit in einem kreiszylindrischen Gefäß befindet, an dessen Boden eine Scheibe rotiert. Normalspannungsdifferenzen rufen in der Flüssigkeit eine Strömung hervor, die auf der Drehachse von unten nach oben gerichtet ist, und die freie Oberfläche wölbt sich nahe der Achse nach außen. Unter der Voraussetzung hinreichend langsamer Strömung wird eine Theorie zweiter Ordnung entwickelt. Sie führt auf elliptische Randwertaufgaben zweiter bzw. vierter Ordnung für das Geschwindigkeitsfeld der Primärströmung in Umfangsrichtung und für die Stromfunktion der Sekundärströmung in der Meridianebene. Ihnen werden äquivalente Variationsaufgaben zugeordnet und mit der Methode der Finiten Elemente numerisch gelöst. Die Gestalt der freien Oberfläche setzt sich bei geeigneter Normierung aus drei universellen Formfunktionen zusammen, die für verschiedene Füllhöhen berechnet werden. Im experimentellen Teil wird nachgewiesen, daß durch entsprechende Messungen der Auslenkung des Flüssigkeitsspiegels die unteren Grenzwerte der beiden Normalspannungskoeffizienten bestimmt werden können. Das Rheometer besitzt den Vorzug, daß die Oberflächenspannung der Flüssigkeit die Meßgröße nur unwesentlich beeinflußt.
Some kind of Weissenberg effect is considered where the viscoelastic fluid, being within a cylindrical vessel, is set in motion by a rotating disc near the tank bottom. Because of normal-stress differences within the fluid a secondary flow arises which is directed upwards near the axis of symmetry, and thus the free surface is deformed. Under the assumption of sufficiently slow flow a second-order theory is developed. It leads to second-order and fourth-order elliptic boundary value problems for the velocity field in azimuthal direction and for the stream function of the secondary flow, respectively. Equivalent variational problems are formulated and solved by the method of finite elements. When normalized appropriately, the shape of the free surface consists of three shape functions, which are independent of any material constants. It is shown by corresponding experiments, that the zero-shear-rate normal-stress coefficients can be determined by measuring the displacement of the free surface. In this rheometer, the surface tension of the fluid causes only insignificant influence on the quantity to be measured.

Symbole C H [—] Verhältnis der FormfunktionenF 2/F1 - f [—] die Sekundärströmung treibende radiale Volumenkraft, dimensionslos - F 0, F1, F2 [—] universelle Formfunktionen - Fr [—] Froude-Zahl - g [m s–2] Erdbeschleunigung - h [—] Auslenkung der Oberfläche, aufr 0 bezogen - H [—] dimensionslose Füllhöhe - K [—] Kennzahl der Kapillarität - r,z [m] Zylinderkoordinaten - r, z [—] dimensionslose Koordinaten - r 0 [m] Radius des Meßbehälters - Re [—] Reynolds-Zahl - v r, v, vz [m s–1] Geschwindigkeitskomponenten - We 1, We2 [—] Weissenberg-Zahlen - [Pa s] Nullviskosität der Flüssigkeit - [°C] Temperatur - [m] Kapillarlänge - v 1, v2 [Pa s2] untere Grenzwerte der Normalspannungskoeffizienten - [kg m–3] Dichte der Flüssigkeit - [N m–1] Oberflächenspannung - [—] Zylinderkoordinate - [—] Dissipationsfunktion der Sekundärströmung, dimensionslos - [—] Stromfunktion, dimensionslos - [—] örtliche Winkelgeschwindigkeit, dimensionslos - [s–1] Winkelgeschwindigkeit der Scheibe  相似文献   

7.
The values of the fully developed Nusselt number for laminar forced convection in a circular tube with axial conduction in the fluid and exponential wall heat flux are determined analytically. Moreover, the distinction between the concepts of bulk temperature and mixing-cup temperature, at low values of the Peclet number, is pointed out. Finally it is shown that, if the Nusselt number is defined with respect to the mixing-cup temperature, then the boundary condition of exponentially varying wall heat flux includes as particular cases the boundary conditions of uniform wall temperature and of convection with an external fluid.
Über laminare Zwangskonvektion mit Längswärmeleitung in einem Kreisrohr mit exponentiell veränderlichem Wandwärmefluß
Zusammenfassung Es werden die Endwerte der Nusselt-Zahlen für vollausgebildete laminare Zwangskonvektion in einem Kreisrohr mit Längswärmeleitung und exponentiell veränderlichem Wandwärmefluß analytisch ermittelt. Besondere Betonung liegt auf dem Unterschied zwischen den Konzepten für die Mittel- und die Mischtemperatur bei niedrigen Peclet-Zahlen. Schließlich wird gezeigt, daß bei Definition der Nusselt-Zahl bezüglich der Mischtemperatur die Randbedingung exponentiell veränderlichen Randwärmeflusses die Spezialfälle konstanter Wandtemperatur und konvektiven Wärmeaustausches mit einem umgebenden Fluid einschließt.

Nomenclature A n dimensionless coefficients employed in the Appendix - Bi Biot numberBi=h e r 0/ - c n dimensionless coefficients defined in Eq. (17) - c p specific heat at constant pressure of the fluid within the tube, [J kg–1 K–1] - f solution of Eq. (15) - h 1,h 2 specific enthalpies employed in Eqs. (2) and (4), [J kg–1] - h e convection coefficient with a fluid outside the tube, [W m–2 K–1] - rate of mass flow, [kg s–1] - Nu bulk Nusselt number,2r 0 q w /[(T w T b )] - Nu H fully developed value of the bulk Nusselt number for the boundary condition of uniform wall heat flux - Nu T fully developed value of the bulk Nusselt number for the boundary condition of uniform wall temperature - Nu * mixing Nusselt number,2r 0 q w /[(T w T m )] - Nu C * fully developed value of the mixing Nusselt number for the boundary condition of convection with an external fluid - Nu H * fully developed value of the mixing Nusselt number for the boundary condition of uniform wall heat flux - Nu T * fully developed value of the mixing Nusselt number for the boundary condition of uniform wall temperature - Pe Peclet number, 2r 0/ - q 0 wall heat flux atx=0, [W m–2] - q w wall heat flux, [W m–2] - r radial coordinate, [m] - r 0 radius of the tube, [m] - s dimensionless radius,s=r/r 0 - T temperature, [K] - T 0 temperature constant employed in Eq. (14), [K] - T reference temperature of the fluid external to the tube, [K] - T b bulk temperature, [K] - T m mixing or mixing-cup temperature, [K] - T w wall temperature, [K] - u velocity component in the axial direction, [m s–1] - mean value ofu, [m s–1] - x axial coordinate, [m] Greek symbols thermal diffusivity of the fluid within the tube, [m2 s–1] - exponent in wall heat flux variation, [m–1] - dimensionless parameter - dimensionless temperature =(T w T)/(T w T b ) - * dimensionless temperature *=(T w T)/(T w T m ) - thermal conductivity of the fluid within the tube, [W m–1 K–1] - density of the fluid within the tube, [kg m–3]  相似文献   

8.
Zusammenfassung Die vorliegende Arbeit untersucht die Filmkondensation auf verschiedenen KörperoberflÄchen. Dabei wird sowohl der instationÄre Anlaufvorgang als auch der stationÄre Proze\ betrachtet. Die Ergebnisse für die Schichtdicke des abflie\enden Kondensates werden eingehend diskutiert. Ist die Schichtdicke als Funktion des Ortes und der Zeit bekannt, ist die Berechnung des kondensierenden bzw. abflie\enden Volumenstromes, sowie die Berechnung des lokalen bzw. für die Praxis bedeutungsvolleren globalen WÄrmeübergangs möglich.
Steady and unsteady process of film condensation on a flat plate, a vertical coin, a horizontal pipe and a sphere
This paper investigates film condensation on different surfaces of geometric bodies. In this connection the unsteady starting process and the steady process are considered. The results for the thickness of layer of the flowing-off condensate are discussed detailed. If the thickness of layer is given as a function of time and location the computation of the condensing, respective flowing-off volume stream and the computation of the local, respective global heat transfer is possible.

Bezeichnungen C Konstante - R Rohr- bzw. Kugelradius [m] - T Temperatur [K] - kondensierender Volumenstrom pro LÄngeneinheit [m2 s–1] - abflie\ender Volumenstrom pro LÄngeneinheit [m2 s–1] - kondensierender Volumenstrom [m3 s–1] - abflie\ender Volumenstrom [m3 s–1] - a Kegelachse - c spez. WÄrme der kondensierenden Flüssigkeit [J kg–1 K–1] - e ErzeugendenlÄnge des Kegels, an der die Randbedingung vorgeschrieben ist [m] - g Erdbeschleunigung [m s–2] - l Platten- bzw. KegellÄnge [m] - p Druck [Nm–2] - q WÄrmestromdichte [J m–2 s–1] - r VerdampfungswÄrme der Flüssigkeit [J kg–1] - t Zeit [s] - u örtliche Geschwindigkeit des Fluids [m s–1] - x, y kartesische Ortskoordinaten - r, Zylinder bzw. Kugelkoordinaten - WÄrmeübergangszahl [J m–2 s–1] - Neigungswinkel der Platte - öffnungswinkel des Kegels - Schichtdicke der kondensierten Flüssigkeit [m] - WÄrmeleitzahl der kondensierten Flüssigkeit [J m–1 s–1] - Dichte der kondensierten Flüssigkeit [kg m–3] - OberflÄchenspannung der kondensierten Flüssigkeit [Nm–1] - Schubspannung in der kondensierten Flüssigkeit [Nm–2] - v kinematische ZÄhigkeit [m2 s–1] - dynamische ZÄhigkeit [kg m–1 s–1] - Winkelkoordinate (Rohr, Kugel), bei der eine Randbe-dingung vorgeschieben ist Indizes g gasförmige Phase - m mittlere - s SÄttigungszustand des gasförmigen Mediums - w auf die OberflÄche der Wand (Platte, Kegel, Rohr,Kugel) bezogen - 0 Ursprung der jeweiligen Störungsausbreitung Dimensionslose Kennzahlen Nu Nu\elt-Zahl - Pr Prandtl-Zahl - Re Reynolds-Zahl Kurzfassung der bei Prof. Dr. W. Schneider, Institut für Strömungslehre und WÄrmeübertragung TU Wien, angefertigten Diplomarbeit  相似文献   

9.
Landslide generated impulse waves.   总被引:4,自引:0,他引:4  
Landslide generated impulse waves were investigated in a two-dimensional physical laboratory model based on the generalized Froude similarity. Digital particle image velocimetry (PIV) was applied to the landslide impact and wave generation. Areas of interest up to 0.8 m by 0.8 m were investigated. The challenges posed to the measurement system in an extremely unsteady three-phase flow consisting of granular matter, air, and water were considered. The complex flow phenomena in the first stage of impulse wave initiation are: high-speed granular slide impact, slide deformation and penetration into the fluid, flow separation, hydrodynamic impact crater formation, and wave generation. During this first stage the three phases are separated along sharp interfaces changing significantly within time and space. Digital masking techniques are applied to distinguish between phases thereafter allowing phase separated image processing. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into the kinematics of the wave generation process. Differential estimates such as vorticity, divergence, elongational, and shear strain were extracted from the velocity vector fields. The fundamental assumption of irrotational flow in the Laplace equation was confirmed experimentally for these non-linear waves. Applicability of PIV at large scale as well as to flows with large velocity gradients is highlighted.List of symbols a wave amplitude (L) - c wave celerity (LT–1) - ddiff diffraction limited minimum particle image diameter (L) - de diffracted particle image diameter (L) - dg granulate grain diameter (L) - dp seeding particle diameter (L) - d recorded particle image diameter (L) - f focal length (L) - f# f number (-) - F slide Froude number (-) - g gravitational acceleration (LT–2) - h still-water depth (L) - H wave height (L) - ls slide length (L) - L wavelength (L) - M magnification (-) - ms slide mass (M) - n refractive index (-) - npor slide porosity (-) - Niw number of seeding particles in an interrogation window (-) - Npair number of detected particle image pairs in window (-) - p interrogation window size p×p pixels; 1 pixel=9 m (L) - P probability (-) - Pil probability of in-plane loss of particle (-) - Pol probability of out-of-plane loss of particle (-) - s slide thickness (L) - S relative slide thickness (-) - t time after impact (T) - T wave period (T) - v velocity (LT–1) - vp particle velocity (LT–1) - vpx streamwise horizontal component of particle velocity (LT–1) - vpy crosswise horizontal component of particle velocity (LT–1) - vpz vertical component of particle velocity (LT–1) - vs slide centroid velocity at impact (LT–1) - V dimensionless slide volume (-) - Viw interrogation volume (L3) - Vs slide volume (L3) - x streamwise coordinate (L) - xip area of view x dimension in image plane (L) - z vertical coordinate (L) - slide impact angle (°) - bed friction angle (°) - y depth of field (L) - t laser pulse separation (T) - x mean particle image x displacement in interrogation window (L) - x random displacement x error (L) - v random velocity v error (LT–1) - tot total random velocity v error (LT–1) - bias velocity v error due to biased correlation analysis (LT–1) - optics velocity v error due to optical imaging errors (LT–1) - track velocity v error due to particle flow tracking error (LT–1) - xx streamwise horizontal elongational strain component (1/T) - xz shear strain component (1/T) - zx shear strain component (1/T) - zz vertical elongational strain component (1/T) - water surface displacement (L) - wavelength (L) - dynamic viscosity (ML–1T–1) - density (ML–3) - g granulate density (ML–3) - p particle density (ML–3) - s mean slide density (ML–3) - w water density (ML–3) - granulate internal friction angle (°) - y vorticity vector component (out-of-plane) (1/T)  相似文献   

10.
Zusammenfassung Es werden Geschwindigkeitsverteilungen und Filmdickenabnahmen von nichtisothermen NEWTONschen und nicht-NEWTONschen (Potenzansatz) Rieselfilmen mit temperaturanhÄngiger ViskositÄt berechnet, wobei die Temperaturverteilung im Film als linear vorausgesetzt wird. An dicken Rieselfilmen mit Re=10–4... 10–2 sind Geschwindigkeitsprofile, Filmdicken und OberflÄchentemperaturen gemessen und daraus die thermische EinlauflÄnge bestimmt worden. Ausgehend von der Penetrationstheorie für eine endlich dicke Platte kann man für diese EinlauflÄnge eine Approximationsformel erhalten, die für Strömungen mit Re < 1000 verwendet werden kann.
Non-isothermal filmflow of a highly viscous liquid, the viscosity strongly depending on temperature
Velocity distributions and film thicknesses of nonisothermal NEWTONIAN and non-NEWTONIAN (power-law) falling films are computed assuming that the temperature across the film varies linearly. Experimental studies on thick falling films of Re=10–4...10–2 had been carried out to measure velocities, film thickness and surface temperature and to calculate the thermal entrance length. One can get for this entrance length a approximation formula which is valid for flows with RePr <1000 by applying the results for the thermal penetration into a material finite plate.

Bezeichnungen B dimensionsloser Temperaturkoeffizient - ¯B [K] Temperaturkoeffizient (ln)/(1/T) - cp [J/kgK] spezif. WÄrme bei konst. Druck - Fo FOURIER-Zahl - g [m/s2] Erdbeschleunigung - H dimensionslose Filmdicke - h [m] Filmdicke - m [Pas2–n] ViskositÄtskoeffizient im Potenzansatz von OSTWALD-DE WAELE - Nu NUSSELT-Zahl - n Flüssigkeitsexponent im Potenzansatz von OSTWALD-DE WAELE - Pr PRANDTL-Zahl (Gl.3.5) - q [W/m2] WÄrmestromdichte - Re REYNOLDS-Zahl (Gl.3.4) - T [K] Temperatur - t [s] Zeit - U dimensionslose Geschwindigkeit (X-Komponente) - u [m/s] Geschwindigkeitskomponente in x-Richtung - X dimensionslose Koordinate (X=x/h0) - x [m] LÄnge, Koordinate - Y dimensionslose Koordinate (Y=y/h0) - y [m] Höhe, Koordinate - [W/m2K] WÄrmeübergangskoeffizient - Plattenneigungswinkel gegen Horizontale - [s–1] Schergeschwindigkeit - dimensionslose Temperatur (Gl.3.3) - [m2/s] TemperaturleitfÄhigkeit (Gl.3.3) - [W/mK] WÄrmeleitfÄhigkeit - [Pas] ViskositÄt - [kg/m3] spezif. Dichte - [Pa] Schubspannung Indizes a scheinbar (apparent) - 0 bei x=0, auch: isotherm - P auf die Penetrationszeit bezogen - s an der OberflÄche - T bei linearer Temperaturdifferenz T - w an der Wand - 99 auf =0,99 bezogen - gemittelt, Mittelwert - thermisch ausgebildet, bei x - proportional - ¯t ungefÄhr - kleiner oder gleich ungefÄhr  相似文献   

11.
The optimum rib size to enhance heat transfer had been proposed through an experimental investigation on the forced convection of a fully developed turbulent flow in an air-cooled horizontal equilateral triangular duct fabricated on its internal surfaces with uniformly spaced square ribs. Five different rib sizes (B) of 5 mm, 6 mm, 7 mm, 7.9 mm and 9 mm, respectively, were used in the present investigation, while the separation (S) between the center lines of two adjacent ribs was kept at a constant of 57 mm. The experimental triangular ducts were of the same axial length (L) of 1050 mm and the same hydraulic diameter (D) of 44 mm. Both the ducts and the ribs were fabricated with duralumin. For every experimental set-up, the entire inner wall of the duct was heated uniformly while the outer wall was thermally insulated. From the experimental results, a maximum average Nusselt number of the triangular duct was observed at the rib size of 7.9 mm (i.e. relative rib size ). Considering the pressure drop along the triangular duct, it was found to increase almost linearly with the rib size. Non-dimensional expressions had been developed for the determination of the average Nusselt number and the average friction factor of the equilateral triangular ducts with ribbed internal surfaces. The developed equations were valid for a wide range of Reynolds numbers of 4,000 < Re D < 23,000 and relative rib sizes of under steady-state condition. A Inner surface area of the triangular duct [m2] - A C Cross-sectional area of the triangular duct [m2] - B Side length of the square rib [mm] - C P Specific heat at constant pressure [kJ·kg–1·K–1] - C 1, C 2, C 3 Constant coefficients in Equations (10), (12) and (13), respectively - D Hydraulic diameter of the triangular duct [mm] - Electric power supplied to heat the triangular duct [W] - f Average friction factor - F View factor for thermal radiation from the duct ends to its surroundings - h Average convection heat transfer coefficient at the air/duct interface [W·m–2 ·K–1] - k Thermal conductivity of the air [W·m–1 ·K–1] - L Axial length of the triangular duct [mm] - Mass flow rate [kg·s–1] - n 1, n 2, n 3 Power indices in Equations (10), (12) and (13), respectively - Nu D Average Nusselt number based on hydraulic diameter - P Fluid pressure [Pa] - Pr Prandtl number of the airflow - c Steady-state forced convection from the triangular duct to the airflow [W] - l Heat loss from external surfaces of the triangular duct assembly to the surroundings [W] - r Radiation heat loss from both ends of the triangular duct to the surroundings [W] - Re D Reynolds number of the airflow based on hydraulic diameter - S Uniform separation between the centre lines of two consecutive ribs [mm] - T Fluid temperature [K] - T a Mean temperature of the airflow [K] - T ai Inlet mean temperature of the airflow [K] - T ao Outlet mean temperature of the airflow [K] - T s Mean surface temperature of the triangular duct [K] - T Ambient temperature [K] - U Mean air velocity in the triangular duct [m·s–1] - r Mean surface-emissivity with respect to thermal radiation - Dynamic viscosity of the fluid [kg·m–1·s–1] - Kinematic viscosity of the airflow [m2·s–1] - Density of the airflow [kg·m–3] - Stefan-Boltzmann constant [W·m–2·K–4]  相似文献   

12.
The influence of eddy shedding on the instantaneous readings of a three-segment cylindrical electrodiffusion velocity probe was investigated in an immersed jet with a very low turbulence intensity, = 1.2%. The velocity fluctuations measured by the three-segment probe were smaller than 2.6%, and the maximum error in the flow angle estimation was 2. Vortices with the Strouhal frequency were detected by a simple electrodiffusion probe placed downstream of the three-segment probe, but no peaks with this frequency were found on the frequency spectra of the three-segment probe. From the probe response to a stepwise change of the polarization voltage the characteristic times of the transient process were estimated. List of symbols a parameter in Eq. (1) [A sb m-b] - A amplitude gain - b parameter in Eq. (1) - c parameter in Eq. (3) [A s–1/2] - d probe diameter [m] - f frequency [s–1] - f s recording frequency [s–1] - G power spectrum - I k relative current through k-th segment, Eq. (2) - i total current [A] - i k current through k-th segment [A] - N number of data samples - Re Reynolds number, - Sr Strouhal number, - t time [s] - t 0 characteristic transient time [s] - v jet velocity [m s-1] - v time mean value of velocity [m s-1] - v x, y velocity components measured by probe [m s-1] - var variance, var - dynamic viscosity [Pa s] - density [kg m-3] - relative deviation, [%] - flow angle, see Fig. 1 - dimensionless frequency For the financial support of this work we express our thanks to the DFG, Bonn. The assistance of Dr. Ondra Wein and Dr. Pavel Mitschka is greatly appreciated.  相似文献   

13.
Landslide generated impulse waves. 2. Hydrodynamic impact craters   总被引:4,自引:0,他引:4  
Landslide generated impulse waves were investigated in a two-dimensional physical laboratory model based on the generalized Froude similarity. Digital particle image velocimetry (PIV) was applied to the landslide impact and wave generation. Areas of interest up to 0.8 m by 0.8 m were investigated. PIV provided instantaneous velocity vector fields in a large area of interest and gave insight into the kinematics of the wave generation process. Differential estimates such as vorticity, divergence, and elongational and shear strain were extracted from the velocity vector fields. At high impact velocities flow separation occurred on the slide shoulder resulting in a hydrodynamic impact crater, whereas at low impact velocities no flow detachment was observed. The hydrodynamic impact craters may be distinguished into outward and backward collapsing impact craters. The maximum crater volume, which corresponds to the water displacement volume, exceeded the landslide volume by up to an order of magnitude. The water displacement caused by the landslide generated the first wave crest and the collapse of the air cavity followed by a run-up along the slide ramp issued the second wave crest. The extracted water displacement curves may replace the complex wave generation process in numerical models. The water displacement and displacement rate were described by multiple regressions of the following three dimensionless quantities: the slide Froude number, the relative slide volume, and the relative slide thickness. The slide Froude number was identified as the dominant parameter.List of symbols a wave amplitude (L) - b slide width (L) - c wave celerity (LT–1) - d g granulate grain diameter (L) - d p seeding particle diameter (L) - F slide Froude number - g gravitational acceleration (LT–2) - h stillwater depth (L) - H wave height (L) - l s slide length (L) - L wave length (L) - M magnification - m s slide mass (M) - n por slide porosity - Q d water displacement rate (L3) - Q D maximum water displacement rate (L3) - Q s maximum slide displacement rate - s slide thickness (L) - S relative slide thickness - t time after impact (T) - t D time of maximum water displacement volume (L3) - t qD time of maximum water displacement rate (L3) - t si slide impact duration (T) - t sd duration of subaqueous slide motion (T) - T wave period (T) - v velocity (LT–1) - v p particle velocity (LT–1) - v px streamwise horizontal component of particle velocity (LT–1) - v pz vertical component of particle velocity (LT–1) - v s slide centroid velocity at impact (LT–1) - V dimensionless slide volume - V d water displacement volume (L3) - V D maximum water displacement volume (L3) - V s slide volume (L3) - x streamwise coordinate (L) - z vertical coordinate (L) - slide impact angle (°) - bed friction angle (°) - x mean particle image x-displacement in interrogation window (L) - x random displacement x error (L) - tot total random velocity v error (LT–1) - xx streamwise horizontal elongational strain component (1/T) - xz shear strain component (1/T) - zx shear strain component (1/T) - zz vertical elongational strain component (1/T) - water surface displacement (L) - density (ML–3) - g granulate density (ML–3) - p particle density (ML–3) - s mean slide density (ML–3) - w water density (ML–3) - granulate internal friction angle (°) - y vorticity vector component (out-of-plane) (1/T)  相似文献   

14.
Zusammenfassung Die Stoffübertragung bei laminarer freier Konvektion wird an der vertikalen ebenen Platte, dem horizontalen Zylinder, der Kugel und in halboffenen Räumen gemessen.- Zur Variation der Grashof- und Schmidt-Zahl wird die Sublimation von Camphen, Paradichlorbenzol und Kampfer in atmosphärische Luft ausgenutzt. In den Bereichen 10 < Gr* < 106 und 2,2 < Sc < 2,6 werden die bekannten Gesetze bei Platte und Zylinder bestätigt. Für die Kugel wird im Bereich 2 · 102 < Ra* < 2 · 106 eine neue Beziehung angegeben. In halboffenen Räumen werden offenbar durch die Konvektionsströmung im Inneren Wirbel erzeugt. Bei diesen Geometrien wird der Zusammenhang Sh Ra*0,5 festgestellt.
Mass transfer solid-gas by laminar free convection
Mass transfer by laminar free convection is measured at the vertical flat plate, the horizontal cylinder, the sphere and in half open rooms.-The sublimation of camphene, paradichlorbenzene and camphor in atmospheric air was turned to reach a variation of the Grashof- and Schmidt-number. The result confirmed the well-known laws of the flat plate and the cylinder within the range of 10 < Gr* < 106 and 2,2 < Sc < < 2,6. Within the range of 2 · 102 < Ra* < 2 · 106 a new relation is stated for the sphere. Inside of the half open room, eddies are produced obviously by the convection flow. At this geometry the relation Sh Ra*0,5 was observed.

Formelzeichen a Temperaturleitzahl [m2/s] - C empirische Konstante - cp spezifische Wärme bei konstantem Druck [J/kg K] - D Diffusionskoeffizient [m2/s] - d Kugeldurchmesser; Zylinderdurchmesser [mm] - f Korrekturfaktor - fL Verhältnis der Wärmemengen von Leitung und freier Konvektion - fStr Verhältnis der Wärmemengen von Strahlung und freier Konvektion - g Fallbeschleunigung [m2/s] - h Zylinderhöhe [mm] - H Sublimationswärme [J/kg] - L Plattenlänge [m] - l Bezugslänge [m] - M relative Molekülmasse - n Exponent der Ra-Zahl und Ra*-Zahl - P statischer Gesamtdruck [N/m2] - p Dampfdruck [N/m2] - R Gaskonstante [J/kg K] - R* Leitwiderstand [K/W] - S Bezugsoberfläche [m2] - T absolute Temperatur [K] - a Wärmeübergangszahl [W/m2K] - * Stoffübergangszahl [m/s] - thermische Ausdehnungszahl [K–1] - Temperatur [°C] - Temperaturdifferenz [K] - Dichte [kg/m3] - Dichtedifferenz [kg/m3] - kinematische Viskosität [m2/s] - Wärmeleitfähigkeit [W/m K] Dimensionslose Kenngrößen Pr Prandtl-Zahl - Sc Schmidt-Zahl - Nu Nusselt-Zahl - Sh Sherwood-Zahl - Gr Grashof-Zahl - Gr* Grashof-Zahl für Stoffübertragung - Ra Rayleigh-Zahl - Ra* Rayleigh-Zahl für Stoffübertragung - Le Lewis-Zahl Indizes G Gas - L Luft; Wärmeleitung - S Stoff - Str Wärmestrahlung - W Wand - unendlich  相似文献   

15.
Experimental measurements of friction factor and heat transfer for the turbulent flow of purely viscous non-Newtonian fluids in a 21 rectangular channel are compared with results previously reported for the circular tube geometry. Comparisons are also made with available analytical and empirical predictions.It is found that the rectangular duct fully established friction factor measurements are within ± 5% of the Dodge-Metzner prediction if the Kozicki generalized Reynolds number is used. A modified form of the simpler explicit equation proposed by Yoo, [i.e.f=0.079n 0.675(Re *)–0.25], is found to yield predictions for both the rectangular duct and the circular tube geometries with approximately the same accuracy as the Dodge-Metzner equation.Fully developed Stanton numbers for the rectangular duct are in good agreement with the circular tube data over a range ofn from 0.37 to 0.88 for a given Prandtl number,Pr a , when compared at a fixed value of the Reynolds number based on the apparent viscosity evaluated at the wall shear stress. In general, the experimental data are within ± 20% of Yoo's equation,St=0.0152Re a –0.155 Pr a –2/3 . A new equation is proposed to bring the prediction for circular pipes as well as rectangular channels into better agreement with generally accepted Newtonian heat transfer results.
Wärmeübergang und Druckverlust für viskose nicht-Newtonsche Fluide in turbulenter Strömung durch rechteckige Kanäle
Zusammenfassung Es werden Messungen des Reibungsfaktors und des Wärmeübergangs bei turbulenter Strömung viskoser nicht-Newtonscher Fluide in einem rechteckigen Kanal mit dem Seitenverhältnis 21 verglichen mit früheren Ergebnissen, die an runden Rohren gewonnen wurden. Weiterhin werden Vergleiche mit aus der Literatur verfügbaren analytischen und empirischen Beziehungen gemacht.Es zeigte sich, daß die Messungen des Reibungsfaktors im rechteckigen Kanal bei vollausgebildeter Strömung auf ± 5% mit der Vorhersage von Dodge-Metzner übereinstimmen, wenn die von Kozicki verallgemeinerte Reynolds-Zahl verwendet wird. Eine modifizierte Form der einfachen von Yoo vorgeschlagenen einfachen Gleichung in explizierter Form (f=0,079n 0,675(Re *)–0,25) bewies, daß sie sowohl für den rechteckigen Kanal als auch das runde Rohr die Werte mit fast der gleichen Genauigkeit wie die Methode von Dodge-Metzner vorhersagen kann.Die Stanton-Zahlen für den rechteckigen Kanal bei vollausgebildeter Strömung sind in guter Übereinstimmung mit den Werten für das runde Rohr in einem Bereich vonn= 0,37 – 0,88 für eine gegebene Prandtl-Zahl, wenn man den Vergleich bei einem vorgegebenen Wert der Reynolds-Zahl anstellt, die auf die scheinbare Viskosität — abgeleitet aus der Wandschubspannungbezogen ist. Generell läßt sich sagen, daß die Werte auf ± 20% mit der Gleichung von Yoo (St=0,0152Re a –0,155 )Pr a –2/3 ) übereinstimmen. Es wird eine neue Gleichung vorgeschlagen, welche sowohl die Werte für runde Rohre als auch die für rechteckige Kanäle in bessere Übereinstimmung bringt mit den in der Literatur üblichen Ergebnissen für den Wärmeübergang an Newtonsche Fluide.

Nomenclature a constant in Eq. (8) - A area of cross-section of channel [m2] - b constant in Eq. (8) - c p specific heat of test fluid [J kg–1 K–1] - d capillary tube diameter [m] - D h hydraulic diameter, 4A/P[m] - f Fanning friction factor, w/(g9 V2/2) - h axially local (spanwise averaged) heat transfer coefficient,q w /(Twi-Tb) [Wm–2 K–1] - k f thermal conductivity of test fluid [Wm–1K–1] - K consistency index of power law fluid - n power law index - Nu fully established, local (spanwise averaged) Nusselt numberh D h /k f - P perimeter of channel [m] - Pr a Prandtl number based on apparent viscosjity, c p /k f - Pr * defined as (Re a Pr a )/Re * - q w wall heat flux [Wm–2] - Re a Reynolds number based on apparent viscosity, VD h/ - Re Metzner's generalized Reynolds number in Eq. (2) - Re * Reynolds number defined in Eq. (8) - St Stanton number,h/( V cp) - T b local bulk temperature of the fluid [K] - T wi local inside wall temperature [K] - T wo local outside wall temperature [K] - V bulk flow velocity [m s–1] - x distance from the inlet of channel along flow direction [m] Greek symbols shear rate [s–1] - apparent viscosity [Pa s] - density of test fluid [kg m–3] - shear stress [Pa] - w shear stress at the wall [Pa] Dedicated to Prof. Dr.-Ing. U. Grigull's 75th birthday  相似文献   

16.
Summary In continuation of a previous investigation a simple analytical expression is derived in closed form for the thickness distribution of the freeze-off layer which is vitrified at the (flat) wall of an oblong rectangular cavity. As has been pointed out previously, this layer is marked for amorphous polymers by the molecular orientation (birefringence pattern) in the moulded sample. One can show that a more detailed study with the aid of the coupled equations of energy and of motion will not furnish essential improvements. Problems of polymer physics like glass transition or crystallization kinetics at extreme rates of cooling and shearing must be solved first.
Zusammenfassung In Fortsetzung einer früheren Untersuchung wurde ein einfacher analytischer Ausdruck in geschlossener Form für die Dickenverteilung der eingefrorenen Schicht abgeleitet, die an der (flachen) Wand eines langgestreckten rechteckigen Formnestes während des Einspritzvorgangs glasig erstarrt. Wie früher auseinandergesetzt wurde, wird diese Schicht bei amorphen Polymeren durch die Molekülorientierung (Doppelbrechungsmuster) im gespritzten Formteil markiert. Man kann zeigen, daß eine eingehendere Studie mit Hilfe der gekoppelten Energie- und Impulsgleichungen keine essentiellen Verbesserungen bringt. Probleme der Polymerphysik, wie Glasübergang oder Kristallisationskinetik bei extremen Abkühlungs- und Schergeschwindigkeiten, müssen erst gelöst werden.

List of Symbols a heat diffusivity of polymer melt (averaged overT) [m2s–1] - B breadth of mould cavity [m] - Br Brinkman number ( ) - c heat capacity of polymer melt (averaged overT) [J kg–1 K–1] - F 0 Fourier number (at i/4H 2) - h heat transfer coefficient by melt flow [J K–1 s–1 m–2] - h heat transfer coefficient by layer growth [J K–1 s–1 m–2] - H half height of mould cavity [m] - L length of mould cavity [m] - n exponent in eq. [18] (= 0.417) - Nu Nußelt number (2Hh/) - P pressure gradientdP/dz in mould [N m–3] - t time [s] - t i injection time [s] - T g glass transition temperature of polymer [K] - T i injection temperature of polymer melt [K] - T l stagnation temperature [K] - T m mould wall temperature [K] - speed of flow front during mould filling [m s–1] - x coordinate perpendicular to mould wall [m] - z coordinate in the injection direction [m] - thickness of stagnant layer (atT l) [m] - 0 optically detectable freeze-off thickness [m] - + apparent layer thickness (atT i) [m] - dimensionless freeze-off thickness (= 0/2H) - dimensionless distance from entrance (=z/L) - m dimensionless coordinate of layer maximum - g dimensionless temperature (= (T iT l)/(T gT m)) - i dimensionless temperature (= (T iT l)/(T iT m)) - l dimensionless temperature (= (T iT l)/(T lT m)) - i viscosity of polymer atT i [N s m–3] - l viscosity of polymer atT l [N s m–3] - heat conductivity of polymer melt (averaged) [J K–1 s–1 m–1] - density of polymer melt (averaged) [kg m–3] - dimensionless time (eq. [11]) - + dimensionless parameter (eqs. [19a] and [19b]) - dimensionless layer thickness (eq. [12]) - + dimensionless parameter (eq. [20a]) - dimensionless parameter (eqs. [11a] and [11b]) Formerly at Delft University of Technology, Delft (The Netherlands).Paper presented at the Conference on Chemical Engineering Rheology, Annual Meeting of the Deutsche Rheologische Gesellschaft in Aachen, March 5–7, 1979.With 3 figures and 1 table  相似文献   

17.
Summary Extrapolation methods for the determination of zero-shear viscosity from falling sphere tests are compared with each other and in particular with dicrect viscometric measurements of this parameter. It is found that all methods of extrapolation overestimate the true zero-shear viscosity and that the discrepancy depends on the degree of shear thinning encountered by the falling spheres. Falling sphere tests only yield the true zero-shear viscosity when the spheres fall in the lower Newtonian region of fluid behaviour. In most instances a suitable combination of sphere properties to achieve this can only be found in the case of very viscous fluids which can in any case also be characterized by direct viscometric measurements in this region.If sphere fall data must be extrapolated, methods based on shear rate rather than shear stress appear preferable since they generally yield lower values of zero-shear viscosity, which are therefore nearer to the true value.
Zusammenfassung Verschiedene Extrapolationsmethoden zur Bestimmung der Null-Viskosität mit Hilfe von Kugelfallversuchen werden miteinander und insbesondere mit der direkten viskosimetrischen Messung dieses Parameters verglichen. Es wird gefunden, daß alle Extrapolationsmethoden den wahren Wert der Null-Viskosität überschätzen und daß der Unterschied vom Grad der Scherentzähung abhängt, der beim Kugelfall vorliegt. Kugelfallversuche liefern nur dann die wahre Nullviskosität, wenn diese im unteren newtonschen Bereich durchgeführt werden. In den meisten Fällen kann eine geeignete Kombination von Kugeleigenschaften zur Realisierung dieser Bedingungen aber nur bei sehr viskosen Flüssigkeiten gefunden werden, die dann genausogut durch direkte viskosimetrische Messungen in diesem Bereich gekennzeichnet werden können.Wenn Kugelfalldaten extrapoliert werden müssen, scheinen Methoden der Auftragung gegen die Schergeschwindigkeit besser geeignet zu sein als solche gegen die Schubspannung. Im ersten Fall werden nämlich durchweg niedrigere Werte der Null-Viskosität erhalten, die somit näher bei den wahren Werten liegen.

Nomenclature c a constant [—] - d sphere diameter [m] - D container diameter [m] - v sphere fall velocity in an infinite medium [ms–1] - shear rate [s–1] - shear rate for = 0.95 0 [s–1] - apparent viscosity [kg m–1 s–1] - 0 zero shear viscosity [kg m–1 s–1] - f fluid density [kg m–3] - p particle density [kg m–3] With 8 figures and 2 tables  相似文献   

18.
Zusammenfassung Die Werte des Diffusionskoeffizienten von Wasserstoff in Wasser und wässerigen Polymerlösungen bei 20 und 30°C und ungefähr l bar Gesamtdruck werden gegeben. Die Bestimmung dieser Werte geschah nach der kürzlich veröffentlichten constant bubble-size-Methode (CBS-Methode).Der Einfluß der freien Konvektion bei der Bestimmung der Diffusionskoeffizienten von mäßig lösbaren Gasen in Flüssigkeiten ist qualitativ untersucht worden. Es wird gezeigt, daß freie Konvektion durch Erhöhung der Viskosität völlig zurückgedrängt wird. Dazu wird die Viskosität durch Zusatz eines Polymerisats erhöht.Weiterhin wurde auch der Zusammenhang zwischen Diffusionskoeffizient und zero-shear-Viskosität quantitativ untersucht. Es wurde die zero-shear-Viskosität dieser wässerigen Polymerlösungen bestimmt. Ferner ergab sich, daß der Zusammenhang zwischen dem Logarithmus des Diffusionskoeffizienten und dem Logarithmus der zero-shear-Viskosität direkt proportional war.Der Diffusionskoeffizient nimmt bei höherem Polymerzusatz leicht ab. Die experimentellen Werte wurden mit Ergebnissen aus dem Schrifttum verglichen.
Measurement of the diffusion coefficient of hydrogen in water and aqueous polymer solutions according to the CBS-method
Values of the diffusion coefficient of hydrogen in water and aqueous polymer solutions at 20 and 30°C and about 1 bar total pressure are given. The measurement of these values has been performed according to the recently published constant bubble size method (CBS-method).The influence of free convection on the determination of diffusion coefficients of slightly soluble gases in liquids has been investigated qualitatively. It is shown that by increase of viscosity, free convection is reduced. To this end, the viscosity is increased by addition of a polymer. Furthermore, the relation between diffusion coefficient and zero-shear viscosity has been investigated quantitatively. The zero-shear viscosity of the non-Newtonian polymer solutions has been determined. A directly proportional relation between the logarithm of the diffusion coefficient and the logarithm of the zero-shear viscosity has been found.Increasing values of the polymer concentration result in a small decrease of the diffusion coefficient. The experimental values are compared with other results from literature.

Formelzeichen a [m2 s–1] Temperaturleitfähigkeit der Flüssigkeit - A c [m2] Oberfläche des gesperrten Kugelabschnitts - c A [mol m–3] Konzentration des GasesA in der Flüssigkeit - c p [kg kg–1] Polymerkonzentration in der Flüssigkeit - c R [mol m–3] Konzentration des Gases in der Flüssigkeit an der Oberfläche (r=R) - c z [mol m–3] Konzentration der Zusatzmenge - c [mol m–3] Konzentration des Gases in der Flüssigkeit fürt=0 und zur fürt >0 - d [m] Gasblasendurchmesser - d c [m] Durchmesser der Spitze des Kegelstumpfs - D AB [m2 s–1] Diffusionskoeffizient des GasesA in der FlüssigkeitB - D w [m2 s–1] fusionskoeffizient des Gases in der reinen Flüssigkeit - g [m s–2] Fallbeschleunigung - L [m] Halbmesser der Innenzelle - m [s–1] Neigung der Gerade in der Gleichung (10) - n [1] Exponent in Gleichung (12) - N A * [mol] Menge des in der Flüssigkeit absorbierten GasesA - p R [Pa] Teildruck des Gases zur=R - r [m] Kugelkoordinate - R [m] Halbmesser der Gasblase - R [Jmol–1K–1] Gaskonstante (R=8.314 J mol–1 K–1) - t [s] Zeit - T [K] Temperatur - T [K] Temperaturdifferenz - v * a [m3] Volumen des in der Flüssigkeit absorbierten GasesA Griechische Formelzeichen [W K–1 m–2] Wärmeübergangskoeffizient - [K–1] Wärmedehnungszahl der Flüssigkeit - [rad] Winkel - [Pa s] Viskosität - w [Pa s] Viskosität der reinen Flüssigkeit - 0 [Pa s] Viskosität der Polymerlösung für 0 - [Pa s] Viskosität der Polymerlösung für - [rad] Kugelkoordinate - [W K–1 m–1] Wärmeleitfähigkeit der Flüssigkeit - [m2 s–1] kinematische Viskosität der Flüssigkeit - L [kg m–3] Dichte der Flüssigkeit - [Pa m] Oberflächenspannung der Flüssigkeit - D [m2 s–1] Standardabweichung vom Diffusionskoeffizienten - n [1] Standardabweichung vonn - [Pa] Schubspannung Dimensionslose Kenngrößen [1] Eötvössche Kenngröße (=L g R2/) - He [1] Henrysche Kenngröße (He=c RRT/pR) - Nu [1] Nusseltsche Kenngröße (Nu= L/) - Ra [l] Rayleighsche Kenngröße (Ra=L 3 g T/(a v))  相似文献   

19.
Under some constraints, solutes undergoing nonlinear adsorption migrate according to a traveling wave. Analytical traveling wave solutions were used to obtain an approximation for the solute front shape,c(z, t), for the situation of equilibrium nonlinear adsorption and first-order degradation. This approximation describes numerically obtained fronts and breakthrough curves well. It is shown to describe fronts more accurately than a solution based on linearized adsorption. The latter solution accounts neither for the relatively steep downstream solute front nor for the deceleration in time of the nonlinear front.Notation A parameter - c concentration [mol/m3] - c 0 * depth-dependent local maximum concentration [mol/m3] - c; c 0;c i concentration difference, feed, and initial resident concentrations, respectively [mol/m3] - D pore scale diffusion/dispersion coefficient [m2/yr] - f adsorption isotherm - f derivative off toc - f second derivative off toc - G * parameter - K nonlinear adsorption coefficient [mol/m3)1–n ] - l column length [m] - L d dispersivity [m] - m parameter - n Freundlich sorption parameter - P function ofc 0 * - q change inq [mol/m3] - q adsorbed amount (volumetric basis) [mol/m3] - q derivative ofq toc - R nonlinear retardation factor - retardation factor for concentrationc - R l linear retardation factor - R(z *) depth-dependent average retardation factor, for front at depthz * - s adsorbed amount (mass basis) [mol/kg] - t time [years] - u parameter - v flow velocity [m] - z * downstream front depth [m] - z depth [m] - transformed coordinate [m] - * reference point value of [m] - first-order decay parameter [y–1] - dry bulk density [kg/m3] - volumetric water fraction - parameter  相似文献   

20.
The glass fibre drawing process is simulated using a finite-element method. The two-dimensional energy and momentum equations are solved in their fully non-linear forms. These are coupled via the temperature-sensitive viscosity function. Both convective and radiative cooling mechanisms are taken into account on the filament surface. An effective emissivity of about 0.2 is found to be applicable to the drawing conditions in this paper. Even at this fairly low effective emissivity, radiation is found to be the dominant mode of cooling. The material thermal conductivity is found to have a small but definite influence on the filament profiles. Two-dimensionsl effects of the kinematic field are only significant up to a distance of about two orifice radii from the nozzle exit.The symbols in the square brackets show the dimensions of the parameters;M Mass,L Length,T Temperature,t Time. a Constant radius of a uniform cylinder [L] - A Local cross-sectional area of the filament [L 2 ] - b i Total tension applied on the filament boundary surface in thei th direction [ML/t 2 ] - c Specific heat [L 2 /t 2 T] - D Local filament diameter [L] - f i i th component of the body-force vector [L/t 2 ] - h Surface convective heat transfer coefficient of the filament [M/t 3 T] - H Total equivalent heat transfer coefficient due to both convection and radiation [M/t 3 T] - k Thermal conductivity [ML/t 3 T] - M Mass-flow rate [M/t] - n Coordinate normal to the local filament surface [L] - Nu Local Nusselt number [–] - Average Nusselt number [–] - Q Rate of heat transfer [ML 2 /t 3 ] - Volume-flow rate [ 3 /t] - r Radial coordinate [L] - R Local radius of the filament [L] - Re x Reynolds number based on characteristic length scalex [–] - s Coordinate along the filament surface [L] - T Temperature [T] - u Radial component of the velocity [T/t] - U Free-stream velocity of a uniform flow [L/t] - v Local speed of a fluid particle defined by v = ;[L/t] - V Volume [L 3 ] - v f Constant velocity of a filament with a uniform radius [L/t] - w Axial component of the velocity [L/t] - Average axial velocity of the fluid inside the tube [L/t] - z Axial coordinate, i.e. axial distance from the orifice exit [L] - Exponential coefficient of the viscosity function [T –1 ] - ij Kronecker delta [–] - Emissivity or total hemispherical emissivity [–] - µ Viscosity [M/Lt] - µ 0 Reference viscosity defined byµ = µ 0 e –T [M/Lt] - Fluid density [M/L 3 ] - Stefan-Boltzmann constant [M/t 3 T 4 ] - Viscous dissipation function [M/Lt 3 ] - a Of air - a Based on the (constant) filament radius - C.L. Referred to the centre line of the filament - conv Referred to convection - D Dased on the diameter - f Referred to the filament local condition - g Referred to glass - i,j Species in multi-component systems - o Quantity evaluated at the orifice exit - R Based on the radius - rad Referred to radiation - s Evaluated at the filament surface - tot Referred to the total heat transfer from the filament surface - w Evaluated at the tube wall - Ambient condition - * Refers to non-dimensional quantities - — Indicating quantities averaged over the filament cross-section  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号