首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
For a Tychonoff space X, we denote by Cλ(X) the space of all real-valued continuous functions on X with set-open topology. In this paper, we study the topological-algebraic properties of Cλ(X). Our main results state that (1) Cλ(X) is a topological vector space (a topological group) iff λ is a family of C-compact sets and Cλ(X)=Cλ(X), where λ consists of all C-compact subsets of every set of λ. In particular, if Cλ(X) is a topological group, then the set-open topology coincides with the topology of uniform convergence on a family λ; (2) a topological group Cλ(X) is ω-narrow iff λ is a family of metrizable compact subsets of X.  相似文献   

2.
The present paper considers the existence of continuous roots of algebraic equations with coefficients being continuous functions defined on compact Hausdorff spaces. For a compact Hausdorff space X, C(X) denotes the Banach algebra of all continuous complex-valued functions on X with the sup norm ∥⋅. The algebra C(X) is said to be algebraically closed if each monic algebraic equation with C(X) coefficients has a root in C(X). First we study a topological characterization of a first-countable compact (connected) Hausdorff space X such that C(X) is algebraically closed. The result has been obtained by Countryman Jr, Hatori-Miura and Miura-Niijima and we provide a simple proof for metrizable spaces.Also we consider continuous approximate roots of the equation znf=0 with respect to z, where fC(X), and provide a topological characterization of compact Hausdorff space X with dimX?1 such that the above equation has an approximate root in C(X) for each fC(X), in terms of the first ?ech cohomology of X.  相似文献   

3.
This paper studies the compact-open topology on the set KC(X) of all real-valued functions defined on a Tychonoff space, which are continuous on compact subsets of X. In addition to metrizability, separability and second countability of this topology on KC(X), various kinds of topological properties of this topology are studied in detail. Actually the motivation for studying the compact-open topology on KC(X) lies in the attempt of having a simpler proof for the characterization of a completeness property of the compact-open topology on C(X), the set of all real-valued continuous functions on X.  相似文献   

4.
Let π:XY be a surjective continuous map between Tychonoff spaces. The map π induces, by composition, an injective morphism C(Y)→C(X) between the corresponding rings of real-valued continuous functions, and this morphism allows us to consider C(Y) as a subring of C(X). This paper deals with finiteness properties of the ring extension C(Y)⊆C(X) in relation to topological properties of the map π:XY. The main result says that, for X a compact subset of Rn, the extension C(Y)⊆C(X) is integral if and only if X decomposes into a finite union of closed subsets such that π is injective on each one of them.  相似文献   

5.
For a space X   denote by Cb(X)Cb(X) the Banach algebra of all continuous bounded scalar-valued functions on X   and denote by C0(X)C0(X) the set of all elements in Cb(X)Cb(X) which vanish at infinity.  相似文献   

6.
The paper presents one of the ways to construct all the locally compact extensions of a given Tychonoff space T. First, there proved the “local” variant of the Stone-C?ech theorem on “completely regular” Riesz spaces X(T) of continuous bounded functions on T with no unit function, in general, but with a collection of local units. In Theorem 1 it is proved that all the functions from X(T) can be “completely regularly” extended on the largest locally compact extension βxT. Theorem 3 states, that βxT are presenting, in fact, all the locally compact extensions of T.  相似文献   

7.
Let Cα(X,Y) be the set of all continuous functions from X to Y endowed with the set-open topology where α is a hereditarily closed, compact network on X which is closed under finite unions. We proved that the density of the space Cα(X,Y) is at most iw(X)⋅d(Y) where iw(X) denotes the i-weight of the Tychonoff space X, and d(Y) denotes the density of the space Y when Y is an equiconnected space with equiconnecting function Ψ, and Y has a base consists of Ψ-convex subsets of Y. We also prove that the equiconnectedness of the space Y cannot be replaced with pathwise connectedness of Y. In fact, it is shown that for each infinite cardinal κ, there is a pathwise connected space Y such that π-weight of Y is κ, but Souslin number of the space Ck([0,1],Y) is κ2.  相似文献   

8.
Let Cp(X) be the space of all continuous real-valued functions on a space X, with the topology of pointwise convergence. In this paper we show that Cp(X) is not domain representable unless X is discrete for a class of spaces that includes all pseudo-radial spaces and all generalized ordered spaces. This is a first step toward our conjecture that if X is completely regular, then Cp(X) is domain representable if and only if X is discrete. In addition, we show that if X is completely regular and pseudonormal, then in the function space Cp(X), Oxtoby's pseudocompleteness, strong Choquet completeness, and weak Choquet completeness are all equivalent to the statement “every countable subset of X is closed”.  相似文献   

9.
Let G be a topological group with the identity element e. Given a space X, we denote by Cp(X,G) the group of all continuous functions from X to G endowed with the topology of pointwise convergence, and we say that X is: (a) G-regular if, for each closed set FX and every point xX?F, there exist fCp(X,G) and gG?{e} such that f(x)=g and f(F)⊆{e}; (b) G?-regular provided that there exists gG?{e} such that, for each closed set FX and every point xX?F, one can find fCp(X,G) with f(x)=g and f(F)⊆{e}. Spaces X and Y are G-equivalent provided that the topological groups Cp(X,G) and Cp(Y,G) are topologically isomorphic.We investigate which topological properties are preserved by G-equivalence, with a special emphasis being placed on characterizing topological properties of X in terms of those of Cp(X,G). Since R-equivalence coincides with l-equivalence, this line of research “includes” major topics of the classical Cp-theory of Arhangel'ski? as a particular case (when G=R).We introduce a new class of TAP groups that contains all groups having no small subgroups (NSS groups). We prove that: (i) for a given NSS group G, a G-regular space X is pseudocompact if and only if Cp(X,G) is TAP, and (ii) for a metrizable NSS group G, a G?-regular space X is compact if and only if Cp(X,G) is a TAP group of countable tightness. In particular, a Tychonoff space X is pseudocompact (compact) if and only if Cp(X,R) is a TAP group (of countable tightness). Demonstrating the limits of the result in (i), we give an example of a precompact TAP group G and a G-regular countably compact space X such that Cp(X,G) is not TAP.We show that Tychonoff spaces X and Y are T-equivalent if and only if their free precompact Abelian groups are topologically isomorphic, where T stays for the quotient group R/Z. As a corollary, we obtain that T-equivalence implies G-equivalence for every Abelian precompact group G. We establish that T-equivalence preserves the following topological properties: compactness, pseudocompactness, σ-compactness, the property of being a Lindelöf Σ-space, the property of being a compact metrizable space, the (finite) number of connected components, connectedness, total disconnectedness. An example of R-equivalent (that is, l-equivalent) spaces that are not T-equivalent is constructed.  相似文献   

10.
For X a metrizable space and (Y,ρ) a metric space, with Y pathwise connected, we compute the density of (C(X,(Y,ρ)),σ)—the space of all continuous functions from X to (Y,ρ), endowed with the supremum metric σ. Also, for (X,d) a metric space and (Y,‖⋅‖) a normed space, we compute the density of (UC((X,d),(Y,ρ)),σ) (the space of all uniformly continuous functions from (X,d) to (Y,ρ), where ρ is the metric induced on Y by ‖⋅‖). We also prove that the latter result extends only partially to the case where (Y,ρ) is an arbitrary pathwise connected metric space.To carry such an investigation out, the notions of generalized compact and generalized totally bounded metric space, introduced by the author and A. Barbati in a former paper, turn out to play a crucial rôle. Moreover, we show that the first-mentioned concept provides a precise characterization of those metrizable spaces which attain their extent.  相似文献   

11.
By a characterization of compact spaces in Section 1, a process of obtaining a compactification (X,k) of an arbitrary topological space X is described in Section 2 by a combined approach of nets and open filters. The Wallman compactification can be embedded in X if X is Hausdorff and by a little modification, the compactification of X is the Stone-?ech compactification of X if X is Tychonoff.  相似文献   

12.
We characterize the spaces X for which the space Cp(X) of real valued continuous functions with the topology of pointwise convergence has local properties related to the preservation of countable tightness or the Fréchet property in products. In particular, we use the methods developed to construct an uncountable subset W of the real line such that the product of Cp(W) with any strongly Fréchet space is Fréchet. The example resolves an open question.  相似文献   

13.
The main results of the paper are as follows: covering characterizations of wQN-spaces, covering characterizations of QN-spaces and a theorem saying that Cp(X) has the Arkhangel'ski?ˇ property (α1) provided that X is a QN-space. The latter statement solves a problem posed by M. Scheepers [M. Scheepers, Cp(X) and Arhangel'ski?ˇ's αi-spaces, Topology Appl. 89 (1998) 265-275] and for Tychonoff spaces was independently proved by M. Sakai [M. Sakai, The sequence selection properties of Cp(X), Preprint, April 25, 2006]. As the most interesting result we consider the equivalence that a normal topological space X is a wQN-space if and only if X has the property S1(Γshr,Γ). Moreover we show that X is a QN-space if and only if Cp(X) has the property (α0), and for perfectly normal spaces, if and only if X has the covering property (β3).  相似文献   

14.
By a result of A.V. Arhangel'skiǐ and E.G. Pytkeiev, the space C(X) of the continuous real functions on X with the topology of pointwise convergence has tightness ω iff Xn is Lindelöf for every n ∈ ω. In this paper we describe other convergence properties of C(X) (e.g. the Fréchet-Urysohn properly) in terms of covering properties of X.In some cases the equivalence between these properties turn out to be dependent on the set theory we choose. Some open problems are also stated.  相似文献   

15.
Let be a surjective continuous map between compact Hausdorff spaces. The map π induces, by composition, an injective morphism C(Y)→C(X) between the corresponding rings of real-valued continuous functions, and this morphism allows us to consider C(Y) as a subring of C(X). This paper deals with algebraic properties of the ring extension C(Y)⊆C(X) in relation to topological properties of the map . We prove that if the extension C(Y)⊆C(X) has a primitive element, i.e., C(X)=C(Y)[f], then it is a finite extension and, consequently, the map π is locally injective. Moreover, for each primitive element f we consider the ideal and prove that, for a connected space Y, If is a principal ideal if and only if is a trivial covering.  相似文献   

16.
Let X be a completely regular Hausdorff space and let H be a subset of C1(X) which separates points and closed sets. By embedding X into a cube whose factors are indexed by H, a Hausdorff compactification eHX of X is obtained. Given two subsets F and G of C1(X) which separate points from closed sets, in the present paper we obtain a necessary and sufficient condition for the equivalence of eFX and eGX. The condition is expressed in terms of the space X and the sets F and G alone, herewith solving a question raised by Chandler.  相似文献   

17.
Let X be a Tychonoff space, C(X) be the space of all continuous real-valued functions defined on X and CL(X×R) be the hyperspace of all nonempty closed subsets of X×R. We prove the following result. Let X be a countably paracompact normal space. The following are equivalent: (a) dimX=0; (b) the closure of C(X) in CL(X×R) with the Vietoris topology consists of all FCL(X×R) such that F(x)≠∅ for every xX and F maps isolated points into singletons; (c) each usco map which maps isolated points into singletons can be approximated by continuous functions in CL(X×R) with the locally finite topology. From the mentioned result we can also obtain the answer to Problem 5.5 in [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] and to Question 5.5 in [R.A. McCoy, Comparison of hyperspace and function space topologies, Quad. Mat. 3 (1998) 243-258] in the realm of normal, countably paracompact, strongly zero-dimensional spaces. Generalizations of some results from [L'. Holá, R.A. McCoy, Relations approximated by continuous functions, Proc. Amer. Math. Soc. 133 (2005) 2173-2182] are also given.  相似文献   

18.
A space Y is called an extension of a space X if Y contains X as a dense subspace. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X point-wise. For two (equivalence classes of) extensions Y and Y of X let Y?Y if there is a continuous function of Y into Y which fixes X point-wise. An extension Y of X is called a one-point extension of X if Y?X is a singleton. Let P be a topological property. An extension Y of X is called a P-extension of X if it has P.One-point P-extensions comprise the subject matter of this article. Here P is subject to some mild requirements. We define an anti-order-isomorphism between the set of one-point Tychonoff extensions of a (Tychonoff) space X (partially ordered by ?) and the set of compact non-empty subsets of its outgrowth βX?X (partially ordered by ⊆). This enables us to study the order-structure of various sets of one-point extensions of the space X by relating them to the topologies of certain subspaces of its outgrowth. We conclude the article with the following conjecture. For a Tychonoff spaces X denote by U(X) the set of all zero-sets of βX which miss X.
Conjecture. For locally compact spaces X and Y the partially ordered sets(U(X),⊆)and(U(Y),⊆)are order-isomorphic if and only if the spacesclβX(βX?υX)andclβY(βY?υY)are homeomorphic.  相似文献   

19.
It is well known that every compactification of a completely regular space X can be generated, via a Tychonoff-type embedding, by some suitably chosen subset of C1(X). Different subsets may give rise to equivalent compactifications, and we are concerned with the problem of finding all subsets of C1(X) which yield a given compactification αX. The problem is easier if generalized: we say that a subset F of C1(X) “determines” the compactification αX if αX is the smallest compactification to which every element of F extends, and give a simple necessary and sufficient condition for F to determine a given compactification αX. A number of sufficient conditions for two sets to determine the same compactification are given, and the relation between sets which determine αX and those which generate αX (via an embedding) is considered. Generally, a much smaller set of functions is required to determine αX than to generate it; the number needed to determine αX is never more than the weight of αX?X, while the number required to generate it is, if infinite, equal to the weight of αX.  相似文献   

20.
In response to questions of Ginsburg [9, 10], we prove that if cf(c)>ω1, then there exists an open-closed, continuous map f from a normal, realcompact space X onto a space Y which is not realcompact. By his result the hyperspace 2x of closed subsets of X is then not realcompact, and the extension μf(vf) of f to the topological completion (the Hewitt realcompactification) of X is not onto. The latter fact solves problems raised by Morita [16] and by Isiwata [12] both negatively. We also consider the problem whether or not the hyperspace of a hereditarily Lindelöf space is hereditarily realcompact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号