首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing global energy requirements, localized power issues and the need for less environmental impact are now providing even more incentive to make fuel cells a reality. A number of technologies have been demonstrated to be feasible for generation of power from fuel cells over the last several years. Proton exchange membranes (PEM) have emerged as an essential factor in the technology race. DuPont has supplied Nafion® perfluorinated membranes in fuel cells for space travel for more than 35 years and they have played an integral part in the success of recent work in portable, stationary and transportation applications. The basis for PEM fuel cell emergence and DuPont technology utilization will be discussed.  相似文献   

2.
Zirconium meta-sulfonphenyl phosphonic acid (Zr-msPPA)/Nafion® composite membranes were prepared to reduce methanol permeability of the Nafion® 117 membrane in direct methanol fuel cell (DMFC) applications. Zr-msPPA crystalline nano proton conductors were synthesized inside the membranes via the reaction of zirconium chloride octahydrate and meta-sulfonphenyl phosphonic acid that had been soaked prior. Synthesis of the Zr-msPPA in the membranes was identified from a series of chemical and physical structure characterizations using FTIR, NMR, EDS, and XRD spectroscopy. The thermal stability of the composite membranes was enhanced by addition of the Zr-msPPA, with considerable reduction in methanol permeability with increasing Zr-msPPA content, as the Zr-msPPA nano conductors acted as crystalline barriers to methanol permeation. The ion conductivity also decreased with increasing Zr-msPPA content, but its effect was not as strong as with methanol permeation given the innate, high conductivity of Zr-msPPA.  相似文献   

3.
The thermal behavior of perfluorosulfonated membranes of three equivalent mass (EW=910, 1000 and 1100 g eq−1) has been studied for membranes in acid form and in the alkali metal countercations substituted samples. The water contents of the membranes decrease progressively with increasing EW and the countercations charge density. The monovalent cations substitutions increase the membranes thermal stability. DSC curves show a single endothermic peak around 120°C that give low peak temperature for low EW and high peak temperature for large cations size. The membrane mechanical properties changed for different EW and temperatures of membranes. Stress-strain analysis showed that K+ substituted membranes at both temperatures present a highest YM compared to the other alkali cation substitutions. The thermal properties of perfluorosulfonated membranes depend on the water contents, cation size, temperature and also on EW value.  相似文献   

4.
In present work, hollow silica spheres (HSS)/Nafion® composite membranes were prepared by solution casting. The thermal properties, water retention, swelling behavior and proton conductivity of the composite membranes were explored. It was found that HSS dispersed well at micrometer scale in the obtained composite membranes by SEM and TEM observation. Thermal properties of composite membranes were improved than that of recast Nafion® membrane. Compared with the recast Nafion® membrane, the composite membranes showed higher water uptake and lower swelling degree at the temperature range from 40 to 100 °C. At the same HSS loading, the smaller the diameter of HSS in composite membranes, the more the water uptake, however, the swelling degree of composite membranes was increased. The proton conductivity of the composite membrane with 3–5 wt.% HSS (120 and 250 nm) increased distinctively at above 60 °C, reached the optimal value at 100 °C, and decreased slowly when the temperature exceeded 100 °C.  相似文献   

5.
Polyelectrolytes were incorporated into porous reinforcing materials to study the properties of ionomers in confined spaces and to determine the effect of the porous material on the behaviour of the membranes. Nafion® was imbibed into porous polypropylene (Celgard®), ultra-high-molecular weight polyethylene (Daramic®), and polytetrafluoroethylene (PTFE) films. Through the use of reinforcing materials, it is possible to prepare membranes that are thinner, but stronger than pure ionomer membranes. Thin reinforced membranes have advantages such as lower areal resistance (as low as 0.14 Ω cm2 for 57 μm CG3501 + Nafion® compared to 0.34 Ω cm2 for 89 μm cast Nafion®) and lower dimensional changes due to swelling (as low as a 4% change in length and width for WDM + Nafion® compared to 13% for cast Nafion®). Using reinforcing materials results in a reduction in important membrane properties compared to bulk Nafion®, such as proton conductivity (as low as 0.016 S cm−1 for CG3401 + Nafion® compared to 0.076 S cm−1 for cast Nafion®), effective proton mobility (as low as 3.2 × 10−4 cm2 V−1 s−1 CG3401 + Nafion® compared to 7.6 × 10−4 cm2 V−1 s−1 for cast Nafion®), and water vapour permeance (as low as 0.036 g h−1 Pa−1 m−2 for WDM + Nafion® compared to 0.056 g h−1 Pa−1 m−2 for cast Nafion®). By normalizing the membrane properties with respect to ionomer content, it was possible to examine the properties of the Nafion® inside the pores of the membranes. The proton conductivity (as low as 0.032 S cm−1 for CG3401 + Nafion®), effective proton mobility (as low as 3.6 × 10−4 cm2 V−1 s−1 for CG3401 + Nafion®), and water vapour permeability (as low as 2.7 × 10−6 g h−1 Pa−1 m−1 for PTFE MP 0.1 + Nafion®) of the ionomer in the membrane are also diminished compared to bulk Nafion® due to decreased connectivity of the ionomer and a restriction in macromolecular motions caused by the pore walls. A series of porous materials with increasing pore were also examined. As the pore size of the PTFE MP materials increased from 0.1 μm to 10 μm, the proton conductivity (0.022 S cm−1 to 0.041 S cm−1), effective proton mobility ((4.1 to 5.6) × 10−4 cm2 V−1 s−1), and water vapour permeability ((2.4 to 4.3) × 10−6 g h−1 Pa−1 m−1) of the reinforced membranes improved with increasing pore size and the properties of the ionomer inside the membranes approached the value of bulk Nafion®.  相似文献   

6.
Hygrothermal aging of Nafion   总被引:1,自引:0,他引:1  
The membrane durability is a critical issue for the development of Proton Exchange Membrane Fuel Cells (PEMFC). Since PEMFC in situ tests were not conclusive to determine Nafion® membrane degradation mechanism, ex situ aging tests were performed on Nafion® 112 in practical fuel cell usage conditions. The polymer chemical structure evolution was investigated by infrared spectroscopy (IR) and Nuclear Magnetic Resonance (NMR) while its hydrophilicity, directly linked to its protonic conductivity, is established through sorption isotherms by Dynamical Vapour Sorption (DVS). Durability studies over a period of 400 days revealed membrane degradation through a modification of sulfonic acid end-groups. Formation of sulfonic anhydride (from the condensation of sulfonic acids) was strongly demonstrated by IR spectroscopy and, indirectly, by NMR. The substitution of ionic end-groups by less hydrophilic anhydrides leads to a significant decrease of water uptake and thus of its hydrophilicity. Surprisingly, kinetic study reveals that the hygrometric level accelerates this condensation reaction.  相似文献   

7.
Polysiloxane-modified hybrid Nafion membranes were prepared by casting a mixture of Nafion solution and a precursor of acid functionalised polysiloxane based on tetraethoxysilane and a mercaptan-organoalkoxysilane.Scanning Electron Microscopy (SEM) and Atomic Force Microscopy analysis revealed that the functionalised polysiloxane was dispersed either as finely nanosized inclusions or as coarse domains depending on the rate of the solvent evaporation during the casting procedure. In particular the slower is the rate of solvent evaporation the more interpenetrated and homogenously dispersed at nanosized level is the polysiloxane inside the Nafion membrane.The hybridization process increases the thermal stability of the membranes of about 50 °C relatively to the unmodified Nafion. Small angle X-ray scattering (SAXS) analysis reveals that the hybrid membranes exhibited the typical morphology of Nafion consisting of distinct hydrophilic and hydrophobic domains.Water vapor sorption and proton conductivity were measured varying the temperature (up to 120 °C) and the water activity conditions (from 0.1 to 0.8). The polysiloxane network always increases the water vapor uptake of the membranes and increases significantly the proton conductivity at higher temperature depending on the type of morphology developed by the manufacturing method. In particular hybrid membranes exhibiting nanosized polysiloxane dispersion show a proton conductivity which is up to one-and-half time higher than Nafion recast membrane at high temperature and low water content.  相似文献   

8.
The transport of methanol through Nafion® membrane in diffusion cell is investigated using the open circuit potential method at different initial methanol concentration solutions. A simple mathematical model based on quasi-steady-state diffusion for the transport of methanol across the membrane in a diffusion cell is developed to simulate the experimental data in order to measure the methanol permeability. The influence of the diffusion cell parameters and thickness of the membrane on the methanol permeability measurement has been evaluated and analyzed. By means of Maclaurin expansion technique, this model can be used to predict the deviation of methanol permeability determined by steady-state diffusion model.  相似文献   

9.
A size-exclusion chromatography (SEC) method in N,N-dimethylformamide containing 0.1 M LiNO3 is shown to be suitable for the determination of molar mass distributions of three classes of perfluorosulfonated ionomers, including Nafion®. Autoclaving sample preparation is optimized to prepare molecular solutions free of aggregates, and a solvent exchange method concentrates the autoclaved samples to enable the use of molar-mass-sensitive detection. Calibration curves obtained from light scattering and viscometry detection suggest minor variation in the specific refractive index increment across the molecular size distributions, which introduces inaccuracies in the calculation of local absolute molar masses and intrinsic viscosities. Conformation plots that combine apparent molar masses from light scattering detection with apparent intrinsic viscosities from viscometry detection partially compensate for the variations in refractive index increment. The conformation plots are consistent with compact polymer conformations, and they provide Mark–Houwink–Sakurada constants that can be used to calculate molar mass distributions without molar-mass-sensitive detection. Unperturbed dimensions and characteristic ratios calculated from viscosity–molar mass relationships indicate unusually free rotation of the perfluoroalkane backbones and may suggest limitations to applying two-parameter excluded volume theories for these ionomers.  相似文献   

10.
A special type of hybrid nano-particles was incorporated into the Nafion® matrix to form a composite membrane. These nano-particles possessed a core–shell structure consisting of silica core (<10 nm) and a densely grafted oligomeric ionmer layer, which was synthesized via atom transfer radical polymerization (ATRP) on the particles’ surface. Besides considerable improvement in the proton conductivity of the membrane, the presence of these hybrid nano-particles in the Nafion® matrix also repressed its methanol permeability by almost four times. The composite membrane also demonstrated superior performance when tested in a single cell membrane-electrolyte assembly (MEA) under direct methanol fuel cell (DMFC) operating condition. It was found that the composite membrane enabled a power density output that was 1.5 times greater than that of pristine Nafion®.  相似文献   

11.
A robust optical composite thin film dissolved oxygen sensor was fabricated by ionically trapping the dye ruthenium(II) tris(4,7-diphenyl-1,10-phenanthroline) dichloride in a blended fluoropolymer matrix consisting of Nafion® and Aflas®. Strong phosphorescence, which was strongly quenched by dissolved oxygen (DO), was observed when the sensor was immersed in water. The sensor was robust, optically transparent, with good mechanical properties. Fast response, of a few seconds, coupled with sensitivity of about 0.1 mg L−1 (DO) over the range 0-30 mg L−1 and resistance to leaching, were also exhibited by this system. The Stern-Volmer (SV) plot exhibited slight downward turning at all oxygen concentrations. A linear plot was obtained when the SV equation was modified to account for the varying sensitivity of dye molecules in the matrix to the quencher. Good long term stability was observed.  相似文献   

12.
The complexes [Ln(pic)3(DTSO)3] (Ln=La, Lu and Y; pic=picrate; DTSO=1,3-dithiane-1-oxide) were synthesized and characterized. Indirect structural determination by far infrared spectroscopy is presented. Results from thermal decomposition of these complexes by TG/DTG and DSC techniques are reported. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
In previous work, the FT-IR maximum of absorption of a low molecular weight HALS containing a sebacate structure was reported to shift from 1738 to 1732 cm−1 during the photo-aging of polypropylene. Previous studies have shown that the reduced mobility of the molecule caused the absorption to shift towards lower frequencies while decreasing its stabilizing activity. This paper presents further results evidencing the loss of activity of the low molecular weight HALS and proposes a novel mechanistic interpretation for the observed spectral shift.  相似文献   

14.
A series of 2,4-diphenylthiazole derivatives were synthesized and directly fluorinated at the 5-position by reaction with the N-F fluorinating reagent Accufluor®. Although fluorination occurred selectively at the thiazole ring, it was always incomplete and thus yields for the novel fluorinated products were low to moderate (19-43%) following purification to remove starting material. Nonetheless, the target compounds were obtained in a convenient and straightforward manner. Selectfluor® was not as effective as Accufluor® as it gave a trace amount of the 5-chlorothiazole that was difficult to remove by chromatography.  相似文献   

15.
Oxygenation of various aldimines with tetrabutylammonium monoperoxysulfate produced the corresponding E- or a mixture of E- and Z-oxaziridines with very high yields (?90%) and good to excellent selectivities (75-100%) within 20 min to 10 h in CH3CN at room temperature (∼25 °C). The E/Z isomer ratio critically depends on the stereo-electronic nature of the substituents in the oxaziridines, solvent, and the presence of Lewis acids and bases.  相似文献   

16.
In the present work, membranes from commercially available Pebax® MH 1657 and its blends with low molecular weight poly(ethylene glycol) PEG were prepared by using a simple binary solvent (ethanol/water). Dense film membranes show excellent compatibility with PEG system up to 50 wt.% of content. Gas transport properties have been determined for four gases (H2, N2, CH4, CO2) and the obtained permeabilities were correlated with polymer properties and morphology of the membranes. The permeability of CO2 in Pebax®/PEG membrane (50 wt.% of PEG) was increased two fold regarding to the pristine Pebax®. Although CO2/N2 and CO2/CH4 selectivity remained constant, an enhancement of CO2/H2 selectivity (∼11) was observed. These results were attributed to the presence of EO units which increases CO2 permeability, and to a probable increase of fractional free-volume. Furthermore, for free-volume discussion and permeability of gases, additive and Maxwell models were used.  相似文献   

17.
In this investigation new superporous hydrogels composites based on aqueous Carbopol® solution (SPHCcs) were prepared. SEM images indicated that the inner surface of SPHCcs contained a lot of pores connected each other and the outer surface of them was non-porous. The swelling ratio decreased with increasing the content of aqueous Carbopol® solution, and the final swelling ratio was similar to that of the SPH although the initial swelling ratio was lower. The density measurement revealed that the porosity increased when aqueous Carbopol® solution was incorporated. It was observed from in vitro bioadhesive force study that SPHCcs adhered to the intestinal mucosal more quickly and exhibited higher mucoadhesion as compared with SPH. It is evident that the hydrogels synthesized in this study could be a potential candidate for transmucosal drug delivery system.  相似文献   

18.
Controlling the activity of water in the reactant streams is critical both to the design of fuel–cell systems and to the useable life of membrane separators. In this study, fuel–cell durability tests were conducted under different levels of relative humidity. The emission rates of various degradation products such as HF, SO42− and TFA (trifluoroacetic acid) were determined as a function of water activity. The degradation of the membrane was accelerated as the level of water activity is reduced. The membranes become less conductive, more brittle and rigid after fuel–cell testing. ATR-FTIR investigations showed that the decomposition of the ether group in the middle of side chain corresponds well with the detection of a TFA product. Thermogravimetric analysis also showed a decrease in thermal stability after testing at lower humidity. Formation of cracks was observed in membranes degraded under conditions of low humidity. A model of membrane degradation based on the main chain unzipping process indicates that the mechanism changes with water activity. Finally, the representative reaction pathways in each degradation scheme were postulated.  相似文献   

19.
The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion®. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion®, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.  相似文献   

20.
Rongalite® promotes cleavage of diaryl disulfides generating chalcogenolate anions that then undergo facile acylation with anhydrides in the presence of CsF to afford thioesters (3) with good to excellent yields. By using the present protocol, 5-arylthio-5-oxopentanoic acid (4) can be facilely prepared. The important features of the methodology are broad substrate scope, simple operation, and no requirement for metal catalysts. It is noteworthy that acylations of diphenyl diselane with anhydrides are also conducted smoothly to afford selenoesters (5) in good yields under the standard conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号