首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new structurally asymmetric diamine monomer containing flexible ether linkages and bulky trifluoromethyl substituents, namely 1,3-bis(4-amino-2-trifluoromethylphenoxy)naphthalene, was prepared from 1,3-dihydroxynaphthalene and 2-chloro-5-nitrobenzotrifluoride. New series of fluorinated polyimides were synthesized from the diamine with six commercially available aromatic tetracarboxylic dianhydrides using a conventional two-stage process with thermal or chemical imidization. The resulting polyimides were highly soluble in a variety of organic solvents and could afford transparent and tough films via solution casting. These polyimides exhibited moderately high glass-transition temperatures (by DSC) of 236-268 °C and softening temperatures (by thermomechanical analysis) of 231-250 °C, and they did not show significant decomposition before 500 °C under either nitrogen or air atmosphere. Also, they revealed low moisture absorptions (0.32-0.78%), low dielectric constants (2.81-3.24 at 10 kHz), and high optical transparency (ultraviolet-visible absorption cutoff wavelengths of 377-426 nm).  相似文献   

2.
1,6-Bis(4-aminophenoxy)naphthalene ( I ) was used as a monomer with various aromatic tetracarboxylic dianhydrides to synthesize polyimides via a conventional two-stage procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by thermal cyclodehydration to polyimides. The diamine ( I ) was prepared through the nucleophilic displacement of 1,6-dihydroxynaphthal-ene with p-chloronitrobenzene in the presence of K2CO3, followed by catalytic reduction. Depending on the dianhydrides used, the poly(amic acid)s obtained had inherent viscosities of 0.73–2.31 dL/g. All the poly(amic acid)s could be solution cast and thermally converted into transparent, flexible, and tough polyimide films. The polyimide films had a tensile modulus range of 1.53–1.84 GPa, a tensile strength range of 95–126 MPa, and an elongation range at break of 9–16%. The polyimide derived from 4,4′-sulfonyldiphthalic anhydride (SDPA) had a better solubility than the other polyimides. These polyimides had glass transition temperatures between 248–286°C (DSC). Thermogravimetric analyses established that these polymers were fairly stable up to 500°C, and the 10% weight loss temperatures were recorded in the range of 549–595°C in nitrogen and 539–590°C in air atmosphere. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
Novel aromatic polyimides containing bis(phenoxy)naphthalene units were synthesized from 1,5-bis(4-aminophenoxy)naphthalene (APN) and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition in a polar solvent such as N,N-dimethylacetamide (DMAc) to give poly(amic acid)s, followed by cyclodehydration to polyimides. The poly(amic acid)s had inherent viscosities between 0.72 and 1.94 dL/g, depending on the tetracarboxylic dianhydrides used. Excepting the polyimide IVb obtained from 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA), all other polyimides formed brown, flexible, and tough films by casting from the poly(amic acid) solutions. The polyimide synthesized from BPDA was characterized as semicrystalline, whereas the other polyimides showed amorphous patterns as shown by the x-ray diffraction studies. Tensile strength, initial moduli, and elongation at break of the APN-based polyimide films ranged from 105–135 MPa, 1.92–2.50 GPa, and 6–7%, respectively. These polyimides had glass transition temperatures between 228 and 317°C. Thermal analyses indicated that these polymers were fairly stable, and the 10% weight loss temperatures by TGA were recorded in the range of 543–574°C in nitrogen and 540–566°C in air atmosphere, respectively. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
A series of new soluble aromatic polyimides with inherent viscosities of 0.65–1.12 dL/g were synthesized from 1,3-bis(4-aminophenyl)-4,5-diphenylimidazolin-2-one and various aromatic tetracarboxylic dianhydrides by the conventional two-step procedure that included ring-opening polyaddition and subsequent thermal cyclodehydration. These polyimides could also be prepared by the one-pot procedure in homogeneous m-cresol solution. Most of the tetraphenyl-pendant polyimides were soluble in organic solvents such as N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, and m-cresol. Some polyimides gave transparent, flexible, and tough films with good tensile properties. The glass transition temperatures and 10% weight loss temperatures under nitrogen of the polyimides were in the range of 287–326 and 520–580°C, respectively. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1767–1772, 1998  相似文献   

5.
Novel fluorinated polyimides (PIs) were prepared from 9,9-bis(4-amino-3,5-difluorophenyl)fluorene with three aromatic dianhydrides via a one-step high-temperature polycondensation procedure. These obtained PIs showed excellent solubility and could be readily soluble in a variety of organic solvents such as NMP, DMAc, DMF, CHCl3, CH2Cl2 and THF. All the PIs could afford flexible and strong films with low dielectric constants (2.62-2.79 at 1 MHz) and low moisture absorptions (0.18-0.41%). Thin films of these PIs exhibited high optical transparency and light color, with the cutoff wavelength at 341-355 nm and transmittance higher than 80% at 450 nm. Meanwhile, these PIs possessed eminent thermal stability, with decomposition temperatures (Td) above 570 °C in both air and nitrogen atmospheres and glass transition temperatures (Tg) beyond 376 °C. Moreover, these fluorinated PI films showed low surface free energy and hydro-oleophobic character. The contact angles on the films for water and glycerol were in the range of 102.3-107.9° and 94.0-100.3°, respectively. In comparison with the analogous PI non-containing fluorine group, these fluorinated PIs showed better solubility, higher optical transparency, lower dielectric constants and lower surface free energy.  相似文献   

6.
The novel diamine, 1,7-bis(4-aminophenoxy)naphthalene (1,7-BAPON), was synthesized and used to prepared polyimides. 1,7-BAPON was synthesized through the nucleophilic displacement of 1,7-dihydroxynaphthalene with p-fluoronitrobenzene in the presence of K2CO3 followed by catalytic-reduction. Polyimides were prepared from 1,7-BAPON and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition to give poly(amic acid)s, followed by cyclodehydration to polyimides. The poly(amic acid)s had inherent viscosities of 0.74-2.48 dL/g. Most of the polyimides formed tough, creasible films. These polyimides had glass transition temperatures between 247–278°C and their 10% weight loss temperatures were recorded in the range of 515–575°C in nitrogen atmosphere. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Novel aromatic polyimides containing tetraphenylpyrrole unit were synthesized from 3,4-bis(4-aminophenyl)-2,5-diphenylpyrrole and various aromatic tetracarboxylic dianhydrides by the usual two-step procedure that included ring-opening polyaddition and subsequent thermal cyclodehydration. These polymers had inherent viscosities in the 0.20–0.65 dL/g range and were practically amorphous as shown by the X-ray diffraction studies. All the polyimides except for polypyromellitimide were easily soluble in a wide range of organic solvents such as o-chlorophenol, pyridine, 1,3-dimethyl-2-imidazolidone, N,N-dimethylacetamide, and N-methyl-2-pyrrolidone at room temperature. These polyimides had high glass transition temperatures of 302–359°C and exhibited 10% weight loss at temperatures above 510°C in nitrogen.  相似文献   

8.
9.
10.
11.
A novel fluorinated diamine monomer, 9,9-bis[4-(4-amino-2-trifluoromethylphenoxy)phenyl]fluorene (II) was prepared via the nucleophilic substitution reaction of 2-chloro-5-nitrobenzotrifluoride with 9,9-bis(4-hydroxyphenyl)fluorene in the presence of potassium carbonate, followed by catalytic reduction with hydrazine and Pd/C. Polyimides V were synthesized from diamine II and various aromatic dianhydrides III a-f via thermal imidization. These polymers had inherent viscosities ranging from 0.84 to 1.03 dL/g and were soluble in a variety of organic solvents such as NMP, DMAc, DMF, and DMSO, and some could even be dissolved in less polar solvents such as m-cresol, pyridine, and dioxane. Polyimide films V a-f had tensile strengths of 85–105 MPa, elongations to break of 7–9%, and initial moduli of 2.13–2.42 GPa. The glass transition temperature of these polymers were in the range of 277–331 °C, their 10% weight loss temperatures were in the range of 539–594 °C in nitrogen and above 544 °C in air, and their char yields at 800 °C in nitrogen ranged between 55–65 wt%. Compared with nonfluorinated polyimides VI, V showed better solubility and lower color intensity. Low dielectric constants (2.68–2.85 at 1 MHz) and low moisture absorptions (0.12–0.24 wt%) were also observed. In particular, V c-f afforded lightly-colored films, which had cutoff wavelengths lower than 385 nm and b* values ranging from 6 to 22.  相似文献   

12.
A series of meltable oligoimide resins with controlled molecular weights by reactive phenylethynyl endcapping groups have been prepared by the thermal polycondensation of 3,3′,4,4′-biphenyltetracarboxylic dianhydride (s-BPDA) with the aromatic diamine mixtures consisting of different mole ratios of 1,4-bis(4-amino-2-trifluoromethylphenoxy)benzene (1,4,4-6FAPB) and 3,4′-oxydianiline (3,4′-ODA) in the presence of 4-phenylethynylphthalic anhydride (PEPA) as molecular weight-controlling and reactive endcapping reagent. Experimental results indicated that the molecular weight-controlled oligoimide resins were mixtures containing a series of biphenylethynyl-endcapped oligoimides with different chemical structures and different molecular weights. The typical oligoimide resins could be melted at temperatures of 300 °C to yield stable molten fluid with melt viscosity of 13.4 Pa s, which was suitable for melt processing. The molten oligoimide resins could be further polymer chain extended and crosslinked by thermal curing of the reactive phenylethynyl groups to give strong and tough thermosetted polyimides. Thus, the oligoimide resin with calculated molecular weight of 2500 exhibited not only good meltability with low melt viscosity, but also high melt stability and fluidability at temperatures of <300 °C. After thermal curing, the obtained thermosetted polyimide showed high glass transition temperature (>316 °C, DMA), excellent thermal stability with initial thermal decomposition temperature of 588 °C and good mechanical properties with flexural strength of 159.1 MPa, flexural moduli of 3.3 GPa, tensile strength of 94.7 MPa and elongation at breakage of 9.0%.  相似文献   

13.
New aromatic polyimides containing a biphenyl-2,2′-diyl or 1,1′-binaphthyl-2,2′-diyl unit were prepared by a conventional two-step method starting from 2,2′-bis(p-aminophenoxy) biphenyl or 2,2′-bis(p-aminophenoxy)-1,1′-binaphthyl and aromatic tetracarboxylic dianhydrides. The polyimides having inherent viscosities of 0.69–0.99 and 0.51–0.59 dL/g, respectively, were obtained. Some of these polymers were readily soluble in a variety of organic solvents including N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide, and pyridine. Transparent, flexible, and pale yellow to brown films of these polymers could be cast from the DMAc or NMP polyamic acid solutions. These aromatic polyimides containing biphenyl and binaphthyl units had glass transition temperatures in the range of 200–235 and 286–358°C, respectively. They began to lose weight around 380°C, with 10% weight loss being recorded at about 470°C in air. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
High Tg polyimides containing pendant phenolic hydroxyl groups were synthesized in high molecular weight via one-step solution polymerization of the dihydrochloride salt of 4,6-diaminoresorcinol with various commercially available dianhydrides. Polymerization proceeds via initial dissociation of diaminoresorcinol dihydrochloride to hydrogen chloride gas and diaminoresorcinol, followed by rapid dissolution of diaminoresorcinol and polymerization with the dianhydride monomer to afford soluble, fully-cyclized polyimide. The resulting poly(hydroxy-imide)s, which contain two phenolic hydroxyl groups per repeat unit, were soluble in amide solvents and dilute aqueous bases, displayed reasonably high glass transition temperatures and a high degree of water uptake. © 1994 John Wiley & Sons, Inc.  相似文献   

15.
Two series of novel fluorinated aromatic polyamides were prepared from 2,2-bis(4-amino-2-trifluoromethylphenoxy)biphenyl (2) and 2,2-bis(4-amino-2-trifluoromethylphenoxy)-1,1-binaphthyl (4) with various aromatic dicarboxylic acids using the phosphorylation polycondensation technique. The polyamides had inherent viscosities ranging from 0.43 to 0.62 dl/g and 0.36 to 0.74 dl/g, respectively. All the fluorinated polyamides were soluble in many polar organic solvents such as N,N-dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone, and afforded transparent, light-colored, and flexible films upon casting from DMAc solvent. These polyamides showed glass-transition temperatures in the ranges of 190-240 °C (for the 6 series from diamine 2) and 247-255 °C (for the 7 series from diamine 4) by differential scanning calorimetry, softening temperatures in the ranges of 196-230 °C (6 series) and 241-291 °C (7 series) by thermomechanical analysis, and decomposition temperatures for 10% weight loss above 420 °C in both nitrogen and air atmospheres.  相似文献   

16.
New soluble polyimides with inherent viscosities of 0.2–0.6 dL/g were synthesized from 3,4-bis (4-aminophenyl)-2,5-diphenylfuran and various aromatic tetracarboxylic dianhydrides by the conventional two-step method which involved ring-opening polyaddition and subsequent cyclodehydration. Almost all of the polymides were generally soluble in a wide range of organic solvents such as N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidone, m-cresol, o-chlorophenol, and pyridine. The polyimide prepared from pyromellitic dianhydride was crystalline, whereas the other polyimides were amorphous. All the polyimides have glass transition temperatures in the range of 281–344°C and showed no appreciable weight loss up to 410°C in both air and nitrogen atmospheres.  相似文献   

17.
2,5-Bis(4-aminophenyl)-3,4-diphenylthiophene, a polyimide-forming monomer, was prepared in three steps starting from benzyl chloride and sulfur. Novel polyimides were synthesized from the diamine and pyromellitic dianhydride or 3,3′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA). Polymerization was carried out either by the usual two-step procedure that included ring-opening polyaddition giving polyamic acids, followed by cyclodehydration to polyimides, or by the direct one-pot procedure involving cyclodehydration in situ. The polyimide derived from the diamine and BTDA, especially that prepared by the one-pot procedure in m-cresol containing isoquinoline, is soluble in various organic solvents and gave a yellow, transparent, tough, and flexible film. Solubility of this polyimide varied by the preparative method and by the copolymerization with bis(4-aminophenyl) ether. All the polyimides are highly thermally stable and exhibited no appreciable decomposition up to 450°C in air and nitrogen atmospheres.  相似文献   

18.
19.
New aromatic polyimides containing triphenylamine unit were prepared by two different methods, i.e., a conventional two-step method starting from 4,4′-diaminotriphenylamine and aromatic tetracarboxylic dianhydrides and the one-step thioanhydride method starting from the aromatic diamine and aromatic tetracarboxylic dithioanhydrides. Both procedures yielded high-molecular-weight polyimides with inherent viscosities of 0.47–1.17 dL/g. Some of these polymers were soluble in organic solvents such as N,N-dimethylacetamide, N-methyl-2-pyrrolidone, m-cresol, and pyridine. All the polyimides afforded transparent, flexible, and tough films, and the color varied from pale yellow to dark red, depending markedly on the tetracarboxylic acid components. The glass transition temperatures (Tgs) of these polyimides were in the range of 287–331°C and the 10% weight loss temperatures were above 520°C in air. The polyimides prepared by the one-step method exhibited better solubility in organic solvents and had somewhat lower Tgs than the polymers prepared by a conventional two-step method.  相似文献   

20.
New fluorinated aromatic polyimides were prepared from 1,4‐(4′‐aminophenoxy)‐2‐(3′‐trifluoromethylphenyl)benzene and aromatic dianhydrides via the polycondensation of one‐step high‐temperature and two‐step thermal or chemical imidization methods. Experimental results indicated that some of the polyimides were soluble both in strong dipolar solvents (N‐methyl‐2‐pyrrolidone or N,N‐dimethylacetamide) and in common organic solvents such as tetrahydrofuran, CHCl3, and acetone. The polyimides showed exceptional thermal and thermooxidative stability and good mechanical properties. No weight loss was detected before a temperature of 520 °C in nitrogen, and the glass‐transition temperatures ranged from 208 to 251 °C. Low dielectric constants (2.55–2.71 at 1 MHz), low refractive indices, and low water absorption were also observed. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 2404–2413, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号