首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Semi-interpenetrating polymer networks, SIPNs, and polymer mixtures (1:1 mass ratio) based on segmented polyester polyurethane, PU, with carboxylic groups and methacrylic copolymer, PM, with tertiary amine groups were prepared. Electron spin resonance, ESR, spin label method was used to study the effect of functional groups concentration on the segmental motion, motional transitions and phase separation. The concentration of functional groups varied from 0 to 0.45 mmol g−1. From the temperature dependent composite ESR spectra of PU labelled component motional heterogeneity was deduced. Restriction of segmental motion of PU segments in the PU/PM mixtures increases with the augmentation of functional groups content due to the additional noncovalent interactions. The critical concentration (0.35 mmol g−1) above which the motional restriction decreases is observed. The effect of functional groups is discussed in terms of the change of local packing density. According to the fractions of the slow component and temperatures of motional transitions SIPNs reveal better interpenetration and interactions of both polymer components. Additional functional groups contribute to a very strong influence of restricted PM chains on the PU hard segments.  相似文献   

2.
Abstract

The object of this study was to assess the effect of the chain length and of the pendant 3-methyl side group in the soft segment of polyurethane (PU) elastomers. In addition, the effect of annealing-quenching on the degree of microstructural segregation between the hard and soft segments was also investigated. The study employed electron spin resonance (ESR), differential scanning calorimetry (DSC), and dynamic mechanical analysis (DMA). Samples for ESR measurements were spin-labeled with the nitroxide probe, 4-hydroxy-2,2′,6,6′-piperidine-1-oxyl (TEMPOL), by reaction of an isocyanate group with the hydroxyl group of TEMPOL. The nitroxide label is therefore located at a chain end. The PU's were based on 4,4′-diphenylmethane diisocyanate (MDI), poly(oxytetramethylene) glycols (PTMO), and hydroxyl-terminated random copolymers of tetrahydrofuran and 3-methyl-tetrahydrofuran (THF/Me-THF). Purified 1,4-butanediol (BD) was used as a chain extender. The elastomers made from higher molecular weight (MW) soft segments have better phase segregation than their lower MW counterparts. The 3-methyl side groups on the PTMO backbone have some effect on the arrangements of the two domains. ESR analysis indicated that the increase in the MW of THF/Me-THF decreased the degree of mixing between the hard and soft segments. In PU elastomers made from high MW soft segments, the presence of crystallinity was observed from the DSC measurements. The crystallinity of the soft segments was disrupted by the existence of the 3-methyl side groups.  相似文献   

3.
聚乙二醇型聚氨酯软硬段对其相变储热性能的影响   总被引:2,自引:0,他引:2  
以不同分子量的聚乙二醇(PEG)为软段,MDI-BDO为硬段,采用两步法溶液聚合合成一种具有固-固相变储热性能的聚氨酯材料.通过DSC,WAXD等测试手段对体系的软硬段结晶性,微相分离,相变可逆性及循环热稳定性进行研究,结果表明,聚氨酯中硬段的存在对软段结晶有着很大的影响,当软段分子量达到2000或以上时,软段才具有较大的结晶度和熔融相变焓,且硬段含量必须高于一定值才能形成较为完善的物理交联网络以保证材料在发生相变时维持固体状态.同时符合这两个条件的试样能具有较好的固-固相变储热性能.就软段PEG含量及分子量对材料储热性能的影响进行了研究,通过调节软段含量与分子量得到一系列具有不同相变焓和相变温度的聚氨酯固-固相变储热材料.经测试还发现,该材料具备很好的相变可逆性和循环热稳定性,是一类很有开发前景的相变储热材料.  相似文献   

4.
The morphology of segmented polyurethane (PU) elastomers was studied by means of ESR at various temperatures ranging from 100K-450K. The PU's were based on 4,4'-diphenylmethane diisocyanate (MDI), poly (oxytetramethylene) glycols (PTMO) and hydroxyl-terminated random compolymers of tetrahydrofuran and 3-methyl-tetrahydrofuran (THF/Me-THF). Purified 1,4-butanediol (BD) was used as a chain extender. The nitroxide probe, 4-hydroxy-2-2',6-6'-tetramethylpiperidine-1-oxyl (TEMPOL), was used to label the polyurethanes by reaction with an NCO group of MDI. Analysis of the electron spin resonance (ESR) spectra suggested that the label situates at heterogeneous sites, which means that a two-phase domain is present. The morphologies at 300K and 400K were compared. It was found from ESR spectra that polyurethanes made from soft segments having higher MW exhibited greater phase separation at 300K than their corresponding elastomers made from lower MW soft segments. However, at 400K the more isotropic ESR spectra for the PUs containing higher MW soft segments suggested that the PUs were more mobile than their analogs having lower MW soft segments. The introduction of 3-methyl side groups decreased the phase mixing at 400K due to steric hindrance.  相似文献   

5.
用正电子湮没谱研究了两类分别由聚己二酸丁二醇酯多元醇和聚ε 己内酯多元醇合成的线型聚酯型聚氨酯 (PBU和PCU)在 140~ 36 0K温度范围内的结构转变和自由体积特性 .研究结果表明 ,两类聚氨酯(PU)在 140~ 36 0K温度范围内 ,都存在三个转变点 ,其中较低温度的转变 (约 2 0 0K)对应于PU中软段的玻璃化转变温度 (Tg) ,2 75K处的转变可能与样品吸附少量水分有关 ,较高温度的转变 (约 310K) ,对于PBU而言对应于软段结晶的熔点 ,而对于PCU则与在无序的硬段中混入一定量的软段后形成的相容区的Tg 有关 .当温度低于PU软段的Tg 时 ,两类PU的自由体积尺寸和浓度都随温度升高而增大 .当温度高于软段的Tg 但低于2 75K时 ,自由体积尺寸较快地增加 ,而自由体积浓度保持不变 .温度高于 2 75K并低于软段的熔点或硬段 软段相容区的Tg 时 ,自由体积尺寸增加速度最快 ,自由体积浓度却保持同样的数值 .当温度进一步升高时 ,自由体积尺寸和浓度都随温度增大而增加 .最后研究了这两类PU的自由体积分布与温度的关系 .所有这些实验现象均与大分子链的运动有关 ,并与通过DSC和WAXD表征的材料的形态一致  相似文献   

6.
Blends of PVC and polyurethanes with four different soft segments of molecular weight 1000 were prepared and studied by dynamic mechanical and DSC techniques. It was found that the compatibility of PVC with segmented polyurethanes was related to the mixing of PVC molecules and the soft segments of the polyurethanes. Polyester based polyurethanes are more compatible with PVC than polyether based polyurethanes. Solution cast blends of PVC with PCL-polyurethane (1/2/1) exhibit single and narrow glass transition, while the blends with PPO-polyurethane (1/2/1) are completely incompatible. The compatibility was found to decrease with increasing hard segment content for all the polyurethanes used. The methods of blend preparation may change the compatibility of PVC/PU blends through their influence on the mixing or demixing of the hard and soft segments.  相似文献   

7.
An intercalated polyurethane (PU) /clay nanocomposite was prepared by in situ intercalative polymerization. The PU/clay nanocomposite pellet or film samples were stretched‐recovery‐restretched, using selfmade microstretching tools. The changes of the basal spacings of clay and the orientation of polymer chain segments during the stretched‐recovery‐restretched process were studied by wide angle X‐ray diffraction (WAXD) and Fourier transform infrared (FTIR) dichoism techniques. The WAXD results show that the basal spacing of clay did not change obviously, indicating that no macromolecular chains entered or moved out of the interlayer space, and the orientations of both hard and soft segments inside the interlayer space did not change obviously, either. The FTIR dichroism tests suggest that outside the interlayer space, the orientation of the hard chain segment increased, decreased, and then increased again during the stretched‐recovery‐restretched process. However, no obvious changes of the degree of orientation of the soft segment were observed during the processes, the slightly orientation might be released during the relaxation process before the measurements. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 654–660, 2007  相似文献   

8.
丁苯、丁腈基聚氨酯的形态与性能   总被引:2,自引:0,他引:2  
用示差扫描量热法 (DSC)、红外分光光度计 (FTIR)和原子力显微镜 (AFM)研究了端羟基聚丁二烯 苯乙烯共聚物 (HTBS)、端羟基聚丁二烯 丙烯腈共聚物 (HTBN)和端羟基聚丁二烯 (HTPB)与甲苯二异氰酸酯、1 ,4 丁二醇构成的溶液法聚二烯烃基聚氨酯 (PU)的形态结构 .结果表明HTPB和HTBS基PU的相分离程度很大 ,而HTBN基PU的相分离程度小 .这可能归因于HTBS软段的极性低 ,不能与硬段形成氢键 ,而HTBN软段中的腈基具有很强的极性 ,且可以与硬段形成氢键作用 ,增加了软硬段间的相容性 ,相分离程度明显降低 .AFM表明HTBN PU随着硬段含量提高 ,表面粗糙度增大 ,由软段为连续相逐渐过渡到双连续结构 .在硬段含量 6 3%时 ,HTBN和HTPB基PU均呈双连续结构 ,而HTBS PU中硬段为连续相 .HTBN PU软段的相区尺寸在1 2nm左右 ,表面粗糙度较大 ,HPBS PU软段的相区尺寸在 1 1nm左右 ,表面粗糙度最小 ,HTPB PU存在 1 4nm和 5 0nm大小不等的软段相区尺寸 .力学性能表明 ,在软段中引入苯乙烯和丙烯腈结构 ,可使聚氨酯抗张强度分别提高 1 5和 2倍 ,模量和断裂伸长率也明显提高  相似文献   

9.
The effects of soft segment length on the variations in morphology, surface composition, and hydrophilicity have been studied in fluorinated polyurethanes (FPUs) and correlated with their preliminary blood compatibility as evidenced by in vitro platelet adhesion experiments. The fluorinated polyurethanes were obtained using hexamethylene diisocyanate (HDI) and chain extender of 2,2,3,3-tetrafluoro-1,4-butanediol (TF) as the hard segment as well as various soft segments—polytetramethyl oxides (PTMO) with molecular weights of 650, 1000, 1400, and 2000. The increased phase separation in hard-segment domains with lengthening soft segment was observed by FT-IR, which is believed to result in enhanced strength of hydrogen bonds and good hard-segment order arrangement. Thin-film XRD results indicate at least three lateral distances existing between adjacent hard segments in the crystallized hard segment. Their distribution depends strongly on the length of soft segment. Lengthening soft segment promotes the formation of dense arrangement of crystallized hard segments. Compared with the effect of phase separation, surface composition was found to exert a major influence on the preliminary blood compatibility of fluorinated polyurethanes. Increasing fluorine content by decreasing soft segment length promotes reduction in platelet adhesion and activation on polyurethane surfaces.  相似文献   

10.
具有热致形状记忆功能的热塑性多嵌段聚氨酯   总被引:21,自引:1,他引:21  
以PCL为软段、TDI-BDO为硬段,采用溶液聚合的方法合成了具有形状记忆功能的线性多嵌段聚氨酯.利用DSC、DMTA、WAXD等测试手段对体系的结晶性、微相分离行为进行了研究.结果发现:聚氨酯中硬段的存在对软段的结晶有着很大的影响,当软段序列的平均分子量达到3000以上时,软段才可以很好地结晶;并且,硬段含量也必须高于一定值才能形成较为完善的物理交联点.符合这些条件的试样能显示很好的形状记忆特征.此外还就拉伸比、多次形变以及组成等对材料的形状回复性能的影响进行了详细的研究.  相似文献   

11.
The tensile properties of polyether-based polyurethane (PU) filaments decrease with increasing chlorine concentrations as well as with treatment times. Fourier transform infrared (FTIR) results show the formation of quinoid, azo, and aldehyde groups in the chlorine-treated PU, and increased hydrogen bonding between the C O C in the soft segment and the N H in the hard segments. A breakdown mechanism involving chain cleavages along the ether linkages in the soft segments as well as at the urethane linkages of the hard–soft segment interfaces is proposed. Chlorine-treated PU showed increased solubility in tetrahydrofuran (THF). The molecular weight data of the THF-soluble portion of treated PU also support the proposed locations of chain scissions. The increased soft segment Tg and Tm with increasing chlorine concentrations are results of increased phase-mixing and hydrogen bonding. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3263–3273, 1997  相似文献   

12.
聚硅氧烷聚脲多嵌段共聚物中氢键的研究   总被引:4,自引:0,他引:4  
采用多种手段研究了聚硅氧烷与聚脲嵌段共聚物中所存在的各类氢键.特别探讨在聚硅氧烷软段中引入极性氰丙基对体系成氢键能力的影响和两相间相互作用力的情况结果表明,在软段分子中引入极性氰丙基有利于增加聚硅氧烷分子与聚脲链段的相互作用,这一相间作用力使两相间界面层厚度随着硬段分子量的增加而加宽,并发现在聚硅氧烷聚脲嵌段共聚物中硬段的聚集形态随溶液浓度改变变化不大,其中氢键随着温度升高而下降.  相似文献   

13.
Semi-IPNs on the basis of PU prepolymers with carboxylic groups and methacrylic copolymers with tertiary amine groups were synthesized. The influence of the functional group content and of the Mn of polymer components, as well as their ratio, on the morphology and mechanical properties were investigated. The miscibility in the systems was estimated by differential scanning calorimetry (DSC) and by scanning electron microscopy (SEM). The miscibility of components was increased by augmenting the content of the functional groups. By varying the ratio of components, the highest miscibility was found at the isoelectric ratio of functional groups. However, all the investigated IPNs were two-phase systems, due to the segmented structure of PU prepolymers. The lowering of Mn values of the starting components did not improve their compatibility. The mechanical properties of semi-IPNs changed with the increased concentration of functional groups in a way that is typical for ionomers. By physical interactions between functional groups, Young's modulus was most influenced, while the Mn of the polymethacrylic component influenced the tensile strength of IPNs. The compatibility between PU hard segments and the polymethacrylic component found in our experiments led us to the conclusion that the preparation of IPNs of finer morphology would be possible by using PU prepolymers with shorter soft segments. © 1996 John Wiley & Sons, Inc.  相似文献   

14.
A series of PCL/MDI/BDO segmented polyurethanes have been synthesized by two-step method in solution.The hard segment content ranges from 10% to 48% by weight, and the molecular weight of PCL diols is 1500. Hard segment spherulites have been observed in compression molded specimens of all of the samples except the one of the lowest hard segment content. The difficulty in sphernlite formation was explained as only in a small temperature range,the microphase separation rate may be faster than the crystallization rate and all these processes are very slow due to the hydrogen bonding between hard and soft segments and the interactions between hard segments themselves. PCL soft segments of molecular weight 1500 is still crystallizable and may form different crystalline superstructures.  相似文献   

15.
A series of polyurea urethane block polymers based on either aminopropyl-terminated polycyanoethylmethylsiloxane (PCEMS) soft segments or soft segment blends of PCEMS and polytetramethylene oxide (PTMO) were synthesized. The hard segments consisted of 4,4′-methylenediphenylene diisocyanate (MDI) chain-extended with 1,4-butanediol. The hard segment content varied from 11 to 36%, whereas the PTMO weight fraction in the soft segment blends varied from 0.1 to 0.9. The cyanoethyl side group concentration was also varied during the synthesis of the PCEMS oligomer. The morphology and properties of these polymers were studied by differential scanning calorimetry, infrared spectroscopy, dynamic mechanical and tensile testing, and small-angle x-ray scattering. These materials exhibited microphase separation of the hard and soft segments; however, attaching polar cyanoethyl side groups along the apolar siloxane chains promoted phase mixing in comparison with polydimethylsiloxane-based polyurethanes. The increased phase mixing is postulated to lead to improved interfacial adhesion and thus can account for the observed improvement in ultimate tensile properties compared with polydimethylsiloxane-based polyurethanes. Both hard segment content and cyanoethyl concentration are important factors governing the morphological and tensile properties of these polymers.  相似文献   

16.
Grafted semi‐interpenetrating polymer networks (IPNs) were prepared from polyurethane (PU) prepolymers with polyester soft segments and hard segments containing carboxylic functional groups as well as polymethacrylate (PM) prepolymers with tertiary amine functional groups. The dependence of morphological and mechanical properties on the concentration of functional groups was studied. The enhanced miscibility of PU and PM prepolymers was observed at concentrations of functional groups of 0.25 mmol/g of polymer and above. Despite the improved miscibility, the PM prepolymers showed a tendency toward phase separation. Because the observed glass‐transition temperature shifts of PU prepolymers indicated substantial miscibility, we ascribed this phenomenon to the presence of methyl methacrylate rich sequences in the PM prepolymer. The observed changes in mechanical properties by increasing the content of functional groups were typical for ionomers. Young's modulus increased as a result of physical interactions between functional groups. A significant drop in tensile strength was observed in IPN samples with phase‐separated PU and PM prepolymers. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 115–123, 2002  相似文献   

17.
The optical properties of mechanochromic materials change under mechanical stress. Segmented polyurethanes are elastomers composed of amorphous, saturated chain soft segments, and rigid pi‐conjugated hard domains. Within aggregates of hard domains pi–pi interactions may form and result in perturbation of the optoelectronic properties of the system. Disruption and restoration of these electronic interactions within the material may lead to observable mechanochromic response. A series of oligothiophene diols and diamines, as well as a naphthalene diimide diol, have been synthesized for incorporation into the hard domains of segmented polyurethanes and polyureas using long poly(tetramethylene oxide) chains as soft segments. The resulting polymers were evaluated to determine their extent of polymerization and their thermal stability. The optical properties of the materials were studied in solution and as thin films. Where possible the electrochemical properties of the polymers were also explored. The length of the soft segment chains in the segmented polyurethanes hindered electronic coupling of hard domains. Future work involving smaller, more solubilizing soft segments may allow for easier material characterization and mechanochromic response. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

18.
Linear segmented polyurethanes based on poly(butylene adipate)s (PBA) of different molecular weight (Mn 2000, 1000, and 600), 4,4′-diphenylmethane diisocyanate (MDI) and the mesogenic diol 4,4′-bis-(6-hydroxyhexoxy)biphenyl (BHHBP) as well as the unsegmented polyurethane consisting of MDI/BHHBP units have been synthesized and characterized by elemental analysis, 13C-NMR and SEC. The thermal behavior and the morphology were studied by DSC, polarizing microscopy, and DMA. The properties of the MDI-polyurethanes were discussed in relation to the BHHBP chain extended 2,4-TDI-polyurethanes and common 1,4-butanediol chain-extended MDI products. MDI polyurethanes based on PBA (Mn 2000) exhibit a glass transition temperature Tg of about −40°C independent of the hard segment content up to ∼50% hard segments. At higher hard segment contents increasing Tgs were observed. Polyurethanes, based on the shorter polyester soft segments PBA (Mn 1000 or 600), reveal an increase in the glass transition temperatures with growing hard segment content. The thermal transitions caused by melting of the MDI/BHHBP hard segment domains are found at 50 K higher temperatures in comparison with the analogous TDI products with mesogenic BHHBP/TDI hard segments. Shortening of the PBA chain length causes a shift of the thermal transitions to lower temperatures. Polarizing microscopy experiments indicate that liquid crystalline behavior is influenced by both the content of mesogenic hard segments and the chain length of the polyester. © 1996 John Wiley & Sons, Inc.  相似文献   

19.
Anionomer-type waterborne polyurethanes (PUs) were obtained from poly(β-methyl-δ-valerolactone) glycol (PMVL) and isophorone diisocyanate, following a prepolymer mixing process. The soft-hard segment phase separation in response to the variations of composition and structure of PU has been studied from the dynamic mechanical measurements of the emulsion cast films. The structural variation included ionic and hard segment content, molecular weight of NCO-terminated prepolymer, and type and length of the soft segment. It was found that phase separation is more sensitive to the soft segment length, rather than the soft segment content. With only phase separation, the rubbery modulus was significant even with lower hard segment content. Phase separation was much more pronounced with PU from poly(tetramethylene adipate) glycol, rather than from PMVL and poly(caprolactone) © 1996 John Wiley & Sons, Inc.  相似文献   

20.
本文利用DSC、IR、WAXD、PLM和SALS等实验手段,探讨了具有相同软段的聚酯型脂肪族和芳香族聚氨酯硬段结晶特性的差异,发现脂肪族聚氨酯的相分离速率极快,氢键主要在硬段间形成,因而对硬段的结晶过程影响不大;而芳香族聚氨酯的相分离速率较慢,软硬段间又能形成氢键,因而对硬段的结晶起了阻碍作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号