首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The copolymers of methacrylic acid with protoporphyrin IX (PPIX) and the metal complexes, zinc protoporphyrin IX and magnesium protoporphyrin IX were synthesised and characterised. Corresponding acrylic acid copolymers were also synthesised. The steady state absorption and fluorescence spectral properties of the macromolecular bound fluorophores PPIX, Zn-PPIX and Mg-PPIX were investigated. Poly(methacrylic acid) bound protoporphyrin IX, zinc protoporphyrin IX and magnesium protoporphyrin IX show an increase in the fluorescence intensity and lifetime with increase in the pH in the range 2-8 with a marked transition around pH 6.0-7.0. The fluorophore concentration in the dilute solution of the copolymers is micromolar and the fluorophore to the carboxylic acid monomer ratios in the copolymer is around 10−3. The molecular weight of the copolymers is 100 ± 10 kD. The fluorescence decay curves of all the fluorophore bound polymers follow biexponential decay fit independent of pH. Poly(MAA-co-PPIX) and poly(MAA-co-MgPPIX) undergo well marked pH induced structural transitions in the pH range of 6.0-7.0 whereas poly(MAA-co-ZnPPIX) undergoes pH induced structural transitions in the pH range of 4.0. In the case of polyacrylic acid copolymers the changes observed in the steady state and time resolved fluorescence studies are less marked. The distinct hydrophobic and hydrophilic environments experienced by the fluorophore bound to PMMA are attributed to the dynamics of the macromolecules in dilute aqueous solutions manifested by the α-methyl group present in the copolymer. The studies carried out using the fluorophores in the time windows from 2 ns to 12 ns indicate evolving trends in the dynamic coiling and reverse coiling of poly methacrylic acid chain.  相似文献   

2.
The effects of polymer concentration, molecular weight of poly(acrylic acid) (PAA), addition of sodium, potassium, ammonium and copper (II) chlorides on the complex formation ability of the system PAA-poly(acrylamide) (PAAM) have been studied in aqueous solutions. The critical pH values of the complexation were determined in different conditions. The complex formation ability of PAAM is compared with other non-ionic polymers. It was shown that an increase in polymers concentration, molecular weight of PAA and ionic strength favours the complexation and shifts the critical pH values to the higher pH region. An addition of CuCl2 to the mixture of two polymers enhances the complexation drastically due to the formation of triple complexes.  相似文献   

3.
The poly(carboxylic acid) bound phenosafranine and thionine dyes show that, the fluorescence intensity and lifetime increases first and starts to decrease after reaching a maximum at pH 4.0. The fluorescence decay curve of the fluorophore bound polymers follow the biexponential decay fit independent of pH, while poly(MAA-Th) follows single exponential function above pH 4.0. At low pH, a more compact environment of the fluorophore exerts a more hydrophobic environment. In the subnanosecond time domain the solvation process is found to be incomplete while in the nanosecond time scale the solvation of the macromolecular chains is found to be over. The time resolved fluorescence spectra of the polymer bound fluorophores at different pH indicate distinct hydrophobic and hydrophilic environments due to the dynamics of the macromolecules in dilute aqueous solutions. For the first time structural transitions involving solvent are observed in the nanosecond and picosecond time domains for the same macromolecule.  相似文献   

4.
Complexes formed from poly(acrylic acid) and poly(2-hydroxyethyl acrylate) were studied in aqueous solutions by viscometric, turbidimetric, FTIR spectroscopic, and thermogravimetric analysis methods. The formation of interpolymer complexes stabilized by hydrogen bonds was observed. It was found that the compositions of these interpolymer complexes are strongly dependent on the concentration of polymers, the order of mixing the solutions, and the pH. It was demonstrated that the complexation ability of poly(2-hydroxyethyl acrylate) is relatively low compared to other known nonionic water-soluble polymers. However, it can be significantly increased via hydrophobic modification of the poly(acrylic acid) using cetyl pyridinium bromide.  相似文献   

5.
Interpolymer complexes of a slightly basic polymer, poly(N-vinylimidazole) (PVIm) with a strongly acidic polymer, poly(acrylic acid) (PAA) have been prepared by mixing aqueous solutions of the respective components. Spectroscopy and thermal methods were used to reveal interaction between VIm and AA moieties. FT-IR analysis showed that the nitrogen atoms at 3rd position of imidazole ring are involved in strong H-bonding with acid groups of PAA leading to a uniform and fully miscible complex structure. As the quantity of PAA increases the thermal stability of complex increases based on TG results. In the DSC analyses, the single Tg for all IPC samples showed that IPCs have good or definite miscibility over the whole range of composition as a result of H-bond formation between acrylic acid and imidazole units.  相似文献   

6.
The compatibility between poly(aspartic acid) and poly(ethylene glycol) for the formation of an interpolymer complex (IPC) was investigated by dynamic rheology and evaluation of zeta potential values. The homogeneity of the realized IPC was observed by near infrared chemical imagistic (NIR-CI) technique. The data were sustained and underlined by the assessment of the compatibility between the polymeric compounds.  相似文献   

7.
The conformational transition of polyacrylic acids and the formation of interpolymer complexes with synthetic polymers in aqueous solution are investigated using the triplet state of the cationic dye phenosafranine covalently attached to the polymer chain. Laser excitation of the phenosafranine dye covalently bound to polymethacrylic acid at 532 nm shows that the absorption spectrum of the triplet state shifts to red region by 40 nm as compared to that of the free dye in aqueous solution and the triplet state lifetime is enhanced by 20-fold. Laser flash excitation shows that the environment of the triplet state of the dye bound to the polyelectrolyte at pH ?5.5 in aqueous solution is more rigid and less polar resulting in a highly compact globular nature of the polymer. The decay of the triplet state of the dye bound to the polymer is attributed to the quenching of the excited state by the carboxylate groups of polyacrylic acids and to the decay process of the triplet in the tightly coiled polymer environment in the pH range 2.0–5.0. The spectra of the triplet dye molecules bound to the polymer at different degree of ionization of the polyelectrolyte suggest that the structural transition from compact globular structure to stretched rod like structure is cooperative involving a series of structural transitions. The observation of diprotonated triplet state of the PMAA bound dye at higher pH (i.e. pH ∼7.0) reveals the existence of an intermediate structure akin to a micellar segment in PMAA prior to the formation of elongated linear chain. The self-organization of PMAA adduct formation with complementary macromolecules, PVP, PEO and PVA primarily due to hydrogen bonding makes the environment of the dye in the adduct more compact and rigid; in particular poly(vinylpyrrolidone), PVP, has the tendency to form more compact interpolymer complex at pH 4.5 than poly(vinyl alcohol), PVA, and poly(ethylene oxide), PEO as revealed from the laser flash photolysis studies of the polymer bound dye using triplet state of the phenosafranine as the marker.  相似文献   

8.
Electrical conductance and other solution properties of aqueous solutions of a fluorine-containing poly(carboxylic acid), (poly(9H,9H-perfluoro-2,5-dimethyl-3,6-dioxa-8-nonenoic acid), PPFNA) were studied with special attention to the salt effect. This polymer dissociated strongly resulting in a low pH value in unneutralized state (β = 0, β: degree of neutralization). The specific conductance was the highest at β = 0 and decreased as β increased. A considerable increase in conductance was observed by titrating NaCl at low β, because large amounts of bound protons were released by addition of NaCl. The amounts of released protons exceeded those originally dissociated at β = 0. Such an anomalous proton liberation suggests that this polymer is a fairly strong polyacid but not a typical one such as poly(styrene sulfonic acid). Under fully neutralized state (β = 1), however, the solution conductance was lower than the sum of the polymer and NaCl added, due to polyion–salt ion interaction.  相似文献   

9.
This article describes the buildup of hydrogen bonded multilayer film of poly(2-vinylpyridine) (P2VP) and poly(acrylic acid) (PAA), and the influence of polymer molecular weight on the formation of microporous film by post-base treatment. The formation of a microporous film involved a two-step mechanism: the release of PAA from P2VP/PAA multilayer, and the reorganization of the remaining P2VP on the substrate. Fourier transform infrared spectroscopy (FT-IR) indicated that the release of PAA from hydrogen bonded multilayer was a rapid process, which was almost independent of the molecular weight of PAA. Furthermore, the molecular weight of P2VP had a great effect on micropore formation by immersing the P2VP/PAA multilayer in basic solution. The rate of micropore formation increased with increasing molecular weight. We anticipate that a comparative study on P2VP/PAA films containing high or low molecular weight polymer provides a way to control the surface morphology, and will be helpful and constructive for the forthcoming discussion about the formation of the microporous film.  相似文献   

10.
This study aimed to investigate the effect of COOH group distribution within a polymer network having amide groups, with which the COOH could form hydrogen bonds. We employed here two polyelectrolyte gels composed of N-isopropylacrylamide (NIPA) networks, either copolymerized with acrylic acid (AA) or within which poly(acrylic acid) (PAA) was entrapped. Both gels (AA–NIPA ∼ 1:4 mol/mol) were prepared by aqueous red-ox polymerization with N,N’-methylenebisacrylamide as the cross-linker. Finely divided gels in NaCl solutions (0.025 and 0.1 M) were titrated with NaOH and back-titrated with HCl at 25 °C. The results of the copolymer gel (CG) agreed well with those of a linear copolymer and a nanoscale gel which had a similar AA content to CG. However, marked differences were observed in the titration behaviors of the AA-copolymerized and PAA-entrapped gels, mainly due to the hydrogen bonding between the entrapped PAA chain and its surrounding NIPA network.  相似文献   

11.
Polymer complexation between poly(styrene-co-maleic acid), (SMA28) and (SMA50) containing 28 and 50 mol% of maleic acid and poly(vinyl pyrrolidone) (PVP), has been investigated by differential scanning calorimeter (DSC), Fourier-transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). All results showed that the ideal complex composition of SMA28/PVP and SMA50/PVP leads, respectively, to 2:1 and 1:1 mole ratio of interacting components.For the investigated systems, the Tg versus composition curve does not follow any of the usual proposed models for polymer blends. Withal, a new model proposed by Cowie et al. is used to fit the Tg data and it is found to reproduce the experimental results more closely. According to n and q obtained values, it seems reasonable to conclude that the inter-associated hydrogen bonds dominate in SMA28/PVP (2:1) complexes. This effect is corroborated by the FTIR study as evidenced by the high displacement of the specific bands and ionic interactions have been clearly identified. Finally, a thermogravimetric study shows that ionic interactions increase the thermal stability of these complexes.  相似文献   

12.
Glass beads were etched with acids and bases to increase the surface porosity and the number of silanol groups that could be used for grafting materials to the surfaces. The pretreated glass beads were functionalized using 3‐aminopropyltriethoxysilane (APS) coupling agent and then further chemically modified by reacting the carboxyl groups of carboxylic acid polymers with the amino groups of the pregrafted APS. Several carboxylic acid polymers and poly(maleic anhydride) copolymers, such as poly(acrylic acid) (PAA), poly(methacrylic acid) (PMA), poly(styrene‐alt‐maleic anhydride) (PSMA), and poly(ethylene‐alt‐maleic anhydride) (PEMA) were grafted onto the bead surface. The chemical modifications were investigated and characterized by FT‐IR spectroscopy, particle size analysis, and tensiometry for contact angle and porosity changes. The amount of APS and the different polymer grafted on the surface was determined from thermal gravimetric analysis and elemental analysis data. Spectroscopic studies and elemental analysis data showed that carboxylic acid polymers and maleic anhydride copolymers were chemically attached to the glass bead surface. The improved surface properties of surface modified glass beads were determined by measuring water and hexane penetration rates and contact angle. Contact angles increased and porosity decreased as the molecular weights of the polymer increased. The contact angles increased with the hydrophobicity of the attached polymer. The surface morphology was examined by scanning electron microscopy (SEM) and showed an increase in roughness for etched glass beads. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Poly(acrylic acid) (PAA) with different molecular weight and poly(vinylpyrrolidone) (PVP) were prepared by free radical polymerization using 2,2′-azoisobutyronitrile (AIBN) as initiator in anhydrous methanol for PAA, and in distilled water for PVP. Then, the complexation between PAA and PVP in aqueous solution was studied by UV transmittance measurement and fluorescence probe technique. The result shows that (1) at low pH, the formation of complexation between PAA and PVP bases on the intermacromolecular hydrogen bond and the composition of the formed complex is around 3:2 (the unit molar ratio of PAA to PVP) at pH 2.60 over the range of pH investigated. (2) The cooperative interaction through the formation of hydrogen bond among active sites plays an important role in complex formation, and depends on the pH of solution, the required minimum chain length of poly(acrylic acid). (3) The hydrogen bond is not affected by small molecular salt, which only affects those carboxylic groups without forming hydrogen bond on the PAA chain.  相似文献   

14.
The in vitro degradation behaviour of non-porous ultra-fine poly(glycolic acid)/poly(l-lactic acid) (PGA/PLA) fibres and porous ultra-fine PGA fibres was investigated. The non-porous ultra-fine PGA/PLA fibres were prepared by electrospinning of a PGA/PLA solution in 1,1,1,3,3,3-hexafluoro-2-propanol and the porous ultra-fine PGA fibres were obtained from them via selective removal of PLA with chloroform. Since PLA has a lower degradation rate than PGA, the degradation rates of the ultra-fine PGA/PLA fibres decreased with increasing content of PLA. The porous ultra-fine PGA fibres were degraded in vitro in the order of non-porous PGA > P-PGA/PLA(90/10) > P-PGA/PLA(70/30) > P-PGA/PLA(50/50) > P-PGA/PLA(30/70) due to autocatalytic hydrolysis.  相似文献   

15.
Morphological behaviour of poly(lactic acid) during hydrolytic degradation   总被引:1,自引:0,他引:1  
The hydrolytic degradation and the morphological behaviour of a packaging grade of poly(lactic acid) (PLA) were characterized by a series of techniques. During the initial degradation process (stage 1) at a temperature near the glass transition temperature (Tg), the molecular weight of PLA decreased as degradation time increased following a bulk erosion mechanism while the crystallinity increased simultaneously, but no observable weight loss occurred at stage 1. Mainly α-form PLA crystal structure was formed for the crystalline PLA with a low content of d stereo-isomers, but the material displayed a lower regularity, smaller domain size, lower melting temperatures Tm and different motional dynamics as compared to the original PLA with a similar level of crystallinity achieved by annealing. The amorphous PLA with a higher amount of d stereo-isomers also yielded the α crystalline phase as well as stereo-complex crystals at stage 1. When the molecular weight and the crystallinity reached a stable level, PLA started erosion into the degrading aqueous medium. During this stage of degradation (stage 2), the crystalline structure in PLA residues was further modified and both pH and temperature influenced the modification. The degradation at stage 2 was likely to follow a surface erosion mechanism with lactic acid as the major product of the weight loss. Besides the crystallinity effect on the degradation, temperature also played a key role in determining the rate of PLA degradation in both stages. The process was very slow at temperatures below the Tg of PLA but the rate was greatly enhanced at temperatures above the Tg.  相似文献   

16.
Poly(carboxylic acid)-dimethylalkylamine complexes were prepared and examined by various methods including infrared spectrometry and chemical titrations. FTIR measurements provided some of the most complete and detailed insights into the type and the stoichiometry of the acid-base complexes. A (1:1) stoichiometric complexation of the poly(carboxylic acid) with tertiary amines was involved in protic solvents. A threshold degree of complexation of 42% was obtained in such a macromolecular system. The equilibrium constant of the proton transfer reaction K was estimated to be independent on the alkyl chain length of the base reagent. Besides the formation of the acid-base complexes, a plasticizing effect of the amine derivatives was demonstrated by differential calorimetry. A Tg depression could be both attributed to the amine molecules linked to the polymer backbone via ionic bonds and to the free molecules dissolved within the free volume of the polymer.  相似文献   

17.
Abstract

Hydrophilicity-controlled poly(arylene ether sulfone) copolymers with phenolphthalein-based carboxylic acid groups (PES-COOH-X) were synthesized via direct copolymerization by adjusting the feed molar ratio. The chemical structures of the obtained copolymers were confirmed by 1H nuclear magnetic resonance (NMR) spectroscopy. The copolymers showed good solubility in common aprotic solvents and exhibited excellent mechanical properties. The water contact angles of the obtained copolymers could be reduced by approximately 52% from 92.1° to 44.2° with increasing content of phenolphthalein-derived monomer, 2-[bis(4-hydroxyphenyl)methyl] benzoic acid (PPH-COOH), in the feed molar ratio. A series of PES-COOH-X membranes was prepared via a conventional immersion precipitation phase inversion method. The effects of the monomer feed molar ratio on the morphology, hydrophilicity, pure water flux, and water uptake of the prepared membranes were investigated. The results showed that the pure water flux of the PES-COOH-X membranes was significantly enhanced by almost a factor of two as compared to the pristine PES membrane. From the water contact angle data, it was identified that the hydrophilicity of the membranes was increased rapidly with increasing PPH-COOH content in the membranes. These hydrophilicity-controlled poly(arylene ether sulfone) copolymers may be considered as good candidates for separation membrane materials.  相似文献   

18.
Poly(lactic acid) (PLA) was depolymerized by methanol in the presence of a novel catalyst: ionic liquids. It was found that the purification method of the main products in the methanolysis catalyzed by ionic liquids was simpler than that of traditional compounds, such as sulfuric acid. Qualitative analysis indicated that the main product in the methanolysis process was methyl lactate. The influences of experimental parameters, such as the amount of ionic liquids, methanolysis time, reaction temperature, and dosages of methanol on the conversion of PLA, yield of methyl lactate were investigated. Under the optimum conditions, using ionic liquid 1-butyl-3-methylimidazolium acetate ([Bmim][Ac]) as catalyst, results showed that the ionic liquid could be reused up to 6 times without apparent decrease in the conversion of PLA and yield of methyl lactate. The kinetics of the reaction was also investigated. The results indicated that the methanolysis of PLA was a first-order kinetic reaction with activation energy of 38.29 kJ/mol. In addition, a possible catalysis mechanism of the methanolysis of PLA was proposed.  相似文献   

19.
The complex formation between helical poly-L-glutamic acid (PLGA) and helical poly-L-proline (PLP) was studied in a methanol-water (2 : 1) cosolvent and a propanol-water cosolvent (9 : 1). Reduced viscosity, circular dichroism, pH, and molar absorptivity were measured. The experimental results exhibit that the interpolymer complex was formed between helical PLGA and helical PLP through hydrogen bonding. When the complex was formed the unit mole ratio of PLGA : PLP(II) is 2 : 1 and PLGA : PLP(I) is 1.5 : 1, the ability of complex formation of PLP (II) with PLGA is better than that of PLP(I). On complexation the conformations of PLGA and PLP change and this change is more enhanced in the PLGA-PLP(II) than the PLGA-PLP(I) complex; its cause is studied. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Semi-crystalline poly(vinyl alcohol) was modified by UV radiation with acrylic acid monomer to get interpenetrating poly(acrylic acid) modified poly(vinyl alcohol), PVAAA, membrane. The stability of various PVAAA membranes in water, 2 M CH3OH, 2 M H2SO4, and 40 wt% KOH aqueous media were evaluated. It was found that the stability of PVAAA membrane is stable in 40 wt% KOH solution. The PVAAA membranes were characterized by differential scanning calorimetry, X-ray diffraction, and thermogravimetry analysis. These results show that (1) the crystallinity in PVAAA decreased with increasing the content of poly(acrylic acid) in the PVAAA membranes. (2) The melting point of the PVAAA membrane is reduced with increasing the content of poly(acrylic acid) in the membrane. (3) Three stages of thermal degradation were found for pure PVA. Compared to pure PVA, the temperature of thermal degradation increased for the PVAAA membrane. The various PVAAA membranes were immersed in KOH solution to form polymer electrolyte membranes, PVAAA-KOH, and their performances for alkaline solid polymer electrolyte were conducted. At room temperature, the ionic conductivity increased from 0.044 to 0.312 S/cm. The result was due to the formation of interpenetrating polymer chain of poly(acrylic acid) in the PVAAA membrane and resulting in the increase of charge carriers in the PVA polymer matrix. Compared to the data reported for different membranes by other studies, our PVAAA membrane are highly ionic conducting alkaline solid polymer electrolytes membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号