首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Methyl methacrylate and butyl methacrylate were polymerized in oil-in-water microemulsions that were stabilized by sodium dodecyl sulphate (SDS). A poly(N-acetylethylenimine) (PNAEI) macromer was also included in the recipe, as a cosurfactant and a comonomer. Polymerizations were initiated by UV-irradiation. The average diameters of latex particles, obtained by STM, were in the range of 17-200 nm. The experimental data evidenced that the particle size was mainly dependent on the SDS/PNAEI ratio. Polymerization yields were around 75-85%. The synthesized copolymers have viscosity average molecular weights in the range of 2.1-2.4×106 and glass transition temperatures of 38.0-43.5°C, lower than those obtained without using PNAEI. The investigation by means of FTIR and 1H-NMR techniques revealed that PNAEI was incorporated into the nanoparticles.  相似文献   

2.
A method for preparation of novel fast photocurable polyethers is described. Thus, novel polyether, poly(3-methacryloxy propylene oxide) was obtained in low molecular weights (Mn: 1700 Da) by cationic ring opening polymerization of the epoxy group of glycidyl methacrylate (GMA) in presence of trimethylsilyl trifilate (TMSTF) as initiator. Copolymerization of the monomer with cyclohexene oxide (CHO) in the same reaction conditions yielded copolyethers with methacylate pendant groups. A series of copolymers with various GMA contents (10-100% mol/mol) were prepared using CHO as diluting comonomer. 1H NMR spectra showed that oxirane function of GMA is somewhat less reactive than CHO. Having methacylate pendant groups the resulting waxy polymers underwent rapid photocrosslinking to give glassy hard materials upon UV irradiation at 350 nm, in the presence of benzoin as photoinitiator. Photocuring abilities of the copolymers were investigated by real time FT-IR using in dimethoxyethane solutions (14.7% w/w). The results showed that, 60% double bonds disappear within 150-300 s by irradiation of diluted copolymer solutions with Xenon lamp (150 W).  相似文献   

3.
The novel methacrylic monomer, 4-nitro-3-methylphenyl methacrylate (NMPM) was synthesized by reacting 4-nitro-3-methylphenol dissolved in ethyl methyl ketone (EMK) with methacryloyl chloride in the presence of triethylamine as a catalyst. The homopolymer and copolymers of NMPM with glycidyl methacrylate having different compositions were synthesized by free radical polymerization in EMK solution at 70 ± 1 °C using benzoyl peroxide as free radical initiator. The homopolymer and the copolymers were characterized by FT-IR, 1H NMR and 13C NMR spectroscopic techniques. The solubility tests were tested in various polar and non-polar solvents. The molecular weight and polydispersity indices of the copolymers were determined using gel permeation chromatography. The glass transition temperature of the copolymers increases with increase in NMPM content. The thermogravimetric analysis of the polymers performed in air showed that the thermal stability of the copolymer increases with NMPM content. The copolymer composition was determined using 1H NMR spectra. The monomer reactivity ratios were determined by the application of conventional linearization methods such Fineman-Ross (r1 = 1.862, r2 = 0.881), Kelen-Tudos (r1 = 1.712, r2 = 0.893) and extended Kelen-Tudos methods (r1 = 1.889, r2 = 0.884).  相似文献   

4.
Bi-functional statistical copolymers, based on allyl methacrylate (AMA) and glycidyl methacrylate (GMA), were synthesized via atom transfer radical polymerization (ATRP). The polymerization reactions were carried out in a diphenyl ether solution at low temperature, 50 °C, using ethyl 2-bromoisobutyrate (EBrIB) as an initiator, and copper chloride with N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA) as the catalyst. Different aspects of the copolymerization, such as the kinetic behaviour, crosslink density and gel fraction were studied. The sol fractions of the synthesized copolymers were characterized by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. The reactivity ratios were calculated from the copolymer composition, determined by 1H NMR, and using the extended Kelen-Tüdös method. Values of 0.82 ± 0.04 and 1.22 ± 0.03 were obtained for AMA and GMA, respectively. The copolymer composition as a function of conversion degree for the different monomer molar fractions in the feed agreed with the theoretical values calculated from the Mayo-Lewis terminal model (MLTM).  相似文献   

5.
Copolymeric nanoparticles of methyl methacrylate (MMA) and N-vinylcaprolactam (VCL) were prepared through free radical polymerization using hydrogen peroxide and l-ascorbic acid as a redox initiator in o/w microemulsion containing sodium dodecyl sulphate (SDS). The copolymers were characterized by FTIR and gel permeation chromatography (GPC) and composition of copolymer was determined by 1H NMR spectroscopy. Reactivity ratio was determined by linear least square and non-linear least square methods. The morphology and particle size distribution of copolymer latexes was determined through transmission electron microscopy (TEM) and dynamic light scattering (DLS). Copolymers were of less than 50 nm size with spherical morphology and latexes were stable for more than 6 months. Phase transition temperature measured through UV-vis spectrometry, for the synthesized copolymer indicates their potential use in biosensors and targeted drug delivery system. Cytotoxicity of nanoparticles was determined by MTT assay on B16F10 melanoma cell lines. Cell viability data shows the IC50 values of copolymeric nanoparticles to be in the range of 0.01-0.1 mg/mL.  相似文献   

6.
Poly[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl methacrylate)] [poly(solketal methacrylate) (PSMA)] was synthesized by free radical polymerization. By partial hydrolysis of the acetal group, random copolymers of SMA with 2,3-dihydroxypropyl methacrylate (DHPMA) were synthesized whereas complete cleavage lead to poly(2,3-dihydroxypropyl methacrylate) (PDHPMA). The copolymer composition was determined by 1H NMR spectroscopy. FTIR spectroscopy indicates the synthesis of random copolymers with different degrees of hydrogen bonding as measured by a shift of the OH vibration bands. The glass transition temperature of the random copolymers increases linearly with increasing DHPMA content, resulting in a positive deviation from the Fox equation. The thermal degradation of both homopolymers and their random copolymers has been studied. Finally, the solution behaviour of the copolymers and PDHPMA in water studied by dynamic light scattering showed a strong tendency of the polymer chains to form clusters in the size range of 15-62 nm. The size and the kind of associating interactions within the clusters strongly depend on the copolymer composition.  相似文献   

7.
Atom transfer radical polymerization (ATRP) of tert-butyl methacrylate (tBMA) was investigated using cuprous bromide with different ligands, solvents, deactivators, etc. The polymerization in bulk and diphenyl ether solvent system performed using Cu(I)Br complexed with NNN′, N″, N″-pentamethyldiethylenetriamine (PMDETA) catalyst in conjunction with 2-bromopropionitrile as an initiator at room temperature showed a curvature in the first-order kinetic plot. The controlled polymerization in methanol solution resulted in slower rate of polymerization and lower molecular weights. Well-defined diblock copolymers of PSt-b-PtBMA synthesized by polystyrene bromo macroinitiator (PSt-Br) with Cu(I)Cl/PMDETA catalyst system yielded predetermined molecular weights and lower polydispersities. Otherwise, the Cu(I)Br/PMDETA catalytic system showed an inefficient polymerization of tert-butyl methacrylate with lower molecular weights and higher polydispersities. Subsequent hydrolysis of the homopolymer refluxed in dioxane with addition of HCl afforded well-defined poly(methacrylic acid).  相似文献   

8.
Glycidyl methacrylate (GM) random copolymers with styrene and methylstyrene (in a 1:1 and 1:3 mole ratio) were synthesized by solution free radical polymerizations at 70 ± 1 °C using α,α′-azoisobutyronitrile as an initiator. The copolymer compositions were obtained using related 1H NMR spectra and the polydispersity indices of the copolymers determined using gel permeation chromatography (GPC). Both types of polymer could be modified by incorporation of the highly sterically demanding tris(trimethylsilyl)methyl substituent (Me3Si)3C-(Tsi = trisyl) through the ring opening reaction of the epoxy groups in copolymers. Chemical modification was determined by 1H NMR and infrared spectroscopies. The glass transition temperature Tg of all copolymers was determined by differential scanning calorimetry (DSC). The Tg value of the copolymers containing bulky trisyl groups was found to increase with incorporation of trisyl groups in polymer structures. The presence of trisyl groups in the polymer side chain created new macromolecules with novel modified properties and potential use as membranes for fluid separation.  相似文献   

9.
N-Vinyl-2-pyrrolidone (NVP) and itaconic anhydride (IA) copolymers were synthesized via radical polymerization. The synthesized copolymers were grafted with MPEG chains of different average molecular weights (350, 550, 750 Da). The grafted copolymers were used as surfactants in the synthesis of poly(ε-caprolactone) (PCL) nanoparticles in water by solvent evaporation technique. In order to further test the synthesized surfactants, the miniemulsion polymerization of vinyl acetate was performed. Two methods of obtaining miniemulsion were implied: a sonicator and a static mixer. The synthesized surfactants performed well in both type of experiments while in the case of static mixer nanoparticles with a lower polydispersity were obtained. Droplets with a mean diameter of 160 nm were obtained when using the sonicator while in the case of static mixer the mean diameter was 280 nm.  相似文献   

10.
The differential microemulsion polymerization technique was used to synthesize the nanoparticles of glycidyl-functionalized poly(methyl methacrylate) or PMMA via a two-step process, by which the amount of sodium dodecyl sulfate (SDS) surfactant required was 1/217 of the monomer amount by weight and the surfactant/water ratio could be as low as 1/600. These surfactant levels are extremely low in comparison with those used in a conventional microemulsion polymerization system. The glycidyl-functionalized PMMA nanoparticles are composed of nanosized cores of high molecular weight PMMA and nano-thin shells of the random copolymer poly[(methyl methacrylate)-ran-(glycidyl methacrylate)]. The particle sizes were about 50 nm. The ratios of the glycidyl methacrylate in the glycidyl-functionalized PMMA were achieved at about 5–26 wt.%, depending on the reaction conditions. The molecular weight of glycidyl-functionalized PMMA was in the range of about 1 × 106 to 3 × 106 g mol−1. The solid content of glycidyl-functionalized PMMA increased when the amount of added glycidyl methacrylate was increased. The glycidyl-functionalized polymer on the surface of nano-seed PMMA nanoparticles was a random copolymer which was confirmed by 1H-NMR spectroscopy. The amounts of functionalization were investigated by the titration of the glycidyl functional group. The structure of the glycidyl-functionalized PMMA nanoparticles was investigated by means of TEM. The glycidyl-functionalized PMMA has two regions of Tg which are at around 90 °C and 125 °C, respectively, of which the first one was attributed to the poly[(methyl methacrylate)-ran-(glycidyl methacrylate)] and the second one was due to the PMMA. A core/shell structure of the glycidyl-functionalized PMMA latex nanoparticles was observed.  相似文献   

11.
Poly[1,1,1,3,3,3-hexafluoro-2-(pentafluorophenyl)propan-2-yl methacrylate (I)] was synthesized, and the copolymers of the monomer I with various compositions of methyl methacrylate (MMA) were prepared and characterized. The glass transition temperature values obtained for the copolymers were between 120 and 150 °C. The refractive indices of the copolymers were in the range of 1.4350-1.4872 at 532 nm. They were thermally stable (up to 297-323 °C), and their water absorptive properties were greatly decreased, compared with pure PMMA.  相似文献   

12.
Six amphiphilic star copolymers comprising hydrophilic units of 2-(dimethylamino)ethyl methacrylate (DMAEMA) and hydrophobic units of methyl methacrylate (MMA) were prepared by the sequential group transfer polymerization (GTP) of the two comonomers and ethylene glycol dimethacrylate (EGDMA) cross-linker. Four star-block copolymers of different compositions, one miktoarm star, and one statistical copolymer star were synthesized. The molecular weights (MWs) and MW distributions of all the star copolymers and their linear homopolymer and copolymer precursors were characterized by gel permeation chromatography (GPC), while the compositions of the stars were determined by proton nuclear magnetic resonance (1H NMR) spectroscopy. Tetrahydrofuran (THF) solutions of all the star copolymers were characterized by static light scattering to determine the absolute weight-average MW () and the number of arms of the stars. The of the stars ranged between 359,000 and 565,000 g mol−1, while their number of arms ranged between 39 and 120. The star copolymers were soluble in acidic water at pH 4 giving transparent or slightly opaque solutions, with the exception of the very hydrophobic DMAEMA10-b-MMA30-star, which gave a very opaque solution. Only the random copolymer star was completely dispersed in neutral water, giving a very opaque solution. The effective pKs of the copolymer stars were determined by hydrogen ion titration and were found to be in the range 6.5-7.6. The pHs of precipitation of the star copolymer solutions/dispersions were found to be between 8.8-10.1, except for the most hydrophobic DMAEMA10-b-MMA30-star, which gave a very opaque solution over the whole pH range.  相似文献   

13.
Amphiphilic triblock copolymers of poly(methyl methacrylate)-b-poly(ethylene oxide)-b-poly(methyl methacrylate) (PMMA-b-PEO-b-PMMA) with well-defined structure were synthesized via atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) initiated by the PEO macroinitiator. The macroinitiator and triblock copolymer with different PMMA and/or PEO block lengths were characterized with 1H and 13C NMR and gel permeation chromatography (GPC). The micelle formed by these triblock copolymers in aqueous solutions was detected by fluorescence excitation and emission spectra of pyrene probe. The critical micelle concentration (CMC) ranged from 0.0019 to 0.016 mg/mL and increased with increasing PMMA block length, while the PEO block length had less effect on the CMC. The partition constant Kv for pyrene in the micelle and in aqueous solution was about 105. The triblock copolymer appeared to form the micelles with hydrophobic PMMA core and hydrophilic PEO loop chain corona. The hydrodynamic radius Rh,app of the micelle measured with dynamic light scattering (DLS) ranged from 17.3 to 24.0 nm and increased with increasing PEO block length to form thicker corona. The spherical shape of the micelle of the triblock copolymers was observed with an atomic force microscope (AFM). Increasing hydrophobic PMMA block length effectively promoted the micelle formation in aqueous solutions, but the micelles were stable even only with short PMMA blocks.  相似文献   

14.
1H NMR and IR spectroscopies were used to investigate the temperature-induced phase transition behaviour of poly(N-isopropylmethacrylamide-co-sodium methacrylate) [P(IPMAAm/MNa)] copolymers, containing in aqueous solutions negatively charged MNa units (i = 1-10 mol%), and the obtained results were compared with those obtained for poly(N-isopropylmethacrylamide) (PIPMAAm) homopolymer. For PIPMAAm/H2O solution, IR spectra indicate that the transition temperatures for the hydrophilic CO groups are slightly higher (by ∼ 2 K) in comparison with hydrophobic CH3 groups. The decreasing values of phase-separated fraction pmax and the decrescent hysteresis during gradual heating and cooling, both with increasing content of MNa units i in the copolymer, show that for copolymers with i ? 5 mol% the globular-like structures formed at temperatures above the respective LCST are rather porous and disordered with relatively low degree of polymer-polymer hydrogen bonding. While for P(IPMAAm/MNa) copolymers with i ? 5 mol% most water molecules are expelled from globular structures, for i < 5 mol% a certain portion of water (HDO) molecules is rather tightly bound in globular structures; at the same time no releasing process was detected for the bound water even for 90 h.  相似文献   

15.
A series of novel stimuli-responsive AB, ABA, and BAB type block copolymers based on 6-O-methacryloyl-1,2:3,4-di-O-isopropylidene-d-galactopyranose (MAIpGP:A block) and 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA: B block) were synthesized via ATRP techniques using ethyl 2-bromoisobutyrate (EBiB) as monofunctional ATRP initiator in the case of diblock copolymer and diethyl meso-2,5-dibromoadipate (DEDBA) as bifunctional ATRP initiator in the case of triblock copolymers. The PMAIpGP blocks of the AB, ABA, and BAB type linear block copolymers were converted to water soluble PMAGP blocks via deprotection process under mild acidic conditions. Both proton NMR and DLS studies demonstrated that block copolymers were temperature-sensitive, whereby the lower critical solution temperature (LCST) of polymers varied with the polymerization degrees of comonomers in the block copolymers. LCST was determined to be between ∼35 °C and 55 °C depending on the type and the comonomer compositions of the block copolymers. It was observed that an increase on the percentage of hydrophilic PMAGP block in block copolymer caused an increase on the LCST value as expected.  相似文献   

16.
Copolymerization of an excess of methyl methacrylate (MMA) relative to 2-hydroxyethyl methacrylate (HEMA) was carried out in toluene at 80 °C according to both conventional and controlled Ni-mediated radical polymerizations. Reactivity ratios were derived from the copolymerization kinetics using the Jaacks method for MMA and integrated conversion equation for HEMA (rMMA = 0.62 ± 0.04; rHEMA = 2.03 ± 0.74). Poly(ethylene glycol) α-methyl ether, ω-methacrylate (PEGMA, Mn = 475 g mol−1) was substituted for HEMA in the copolymerization experiments and reactivity ratios were also determined (rMMA = 0.75 ± 0.07; rPEGMA ∼ 1.33). Both the functionalized comonomers were consumed more rapidly than MMA indicating the preferred formation of heterogeneous bottle-brush copolymer structures with bristles constituted by the hydrophilic (macro)monomers. Reactivity ratios for nickel-mediated living radical polymerization were comparable with those obtained by conventional free radical copolymerization. Interactions between functional monomers and the catalyst (NiBr2(PPh3)2) were observed by 1H NMR spectroscopy.  相似文献   

17.
Temperature responsive copolymers of dextran grafted with poly(N-isopropylacrylamide) (Dex-g-PNIPAAM) were prepared by atom transfer radical polymerization (ATRP) in homogeneous mild conditions without using protecting group chemistry. Dextran macroinitiator was synthesized by reaction of dextran with 2-chloropropionyl chloride at room temperature in DMF containing 2% LiCl. ATRP was carried out in DMF:water 50:50 (v/v) mixtures at room temperature with CuBr/Tris(2-dimethylaminoethyl)amine (Me6TREN) as catalyst. Several grafted copolymers with well defined number and length of low polydispersity grafted chains were prepared. Temperature induced association properties in aqueous solution were studied as a function of temperature and polymer concentration by dynamic light scattering, fluorescence spectroscopy and atomic force microscopy (AFM). LCST, ranging from 35 to 41 °C, was significantly affected by number and length of grafted chains. The fine tuning of LCST around body temperature is an important characteristic not obtainable by conventional radical grafting of PNIPAAM. Well defined spherical nanoparticles were formed above the LCST of PNIPAAM. Hydrodynamic diameter was in the range 73-98 nm.  相似文献   

18.
Methylmethacrylate copolymer nanoparticles with different hydrophilic chains were prepared by the free radical polymerization of methylmethacrylate with N-isopropylacrylamide (NIPAAm), N-methacrylic acid (MAA), N-trimethylaminoethylmethacrylate chloride (TMAEMC) or N-dimethylaminoethylmethacrylate hydrochloride (DMAEMC). These particles were characterized by particle size and zeta potential. The polymerization conditions were shown to influence the particle size and surface charge. Particle sizes of MMA-NIPAAm nanoparticles after 3 h of reaction reached constant level at 180 nm. An increasing amount of total monomer (0.5-5%) would result in the nanoparticles of particle size of 115-204 nm for 30% NIPAAm of the total monomer. In the same range of 5-40% NIPAAm of the total monomer, the particle size decreased from 280 to 170 nm. The concentration of the initiator APS up to a concentration of 0.2% for MMA-TMAEMC and 0.1% for MMA-NIPAAm showed no effect on the particle size of the final nanoparticle suspensions, while higher concentration would lead to aggregation in the polymerization process. MMA-NIPAAm nanoparticles were pH-dependent in zeta potential at pH 1-12 values reducing from 12.2 mV to −16.8 mV, respectively. Nanoparticles were incubated with pepsin and trypsin at 37 °C for 20 min and their enzyme inhibition was determined. The activity of pepsin decreased to 27% in the presence of MMA-NIPAAm nanoparticles, and MMA-MAA nanoparticles reduced the activity of trypsin to 39%, respectively.  相似文献   

19.
Styrene (S) and glycidyl methacrylate (GMA) copolymers were synthesized by atom transfer radical polymerization (ATRP) under different conditions. The effect of initiators, ligands, solvents, and temperature to the linear first-order kinetics and polydispersity index (PDI) was investigated for bulk polymerization. First-order kinetics was observed between linearly increasing molecular weight versus conversion and low polydispersities (PDI) were achieved for ethyl 2-bromo isobutyrate (EBiB) as an initiator and N,N′,N′,N″,N″-pentamethyldiethylenetriamine (PMDETA)/CuBr as a catalyst. The copolymers with different compositions were synthesized using different in-feed ratios of monomers. Copolymers composition was calculated from 1H NMR spectra which were further confirmed by quantitative 13C{1H} NMR spectra. The monomer reactivity ratios were obtained with the help of Mayo-Lewis equation using genetic algorithm method. The values of reactivity ratios for glycidyl methacrylate and styrene monomers are rG = 0.73 and rS = 0.42, respectively.  相似文献   

20.
Core/shell nanoparticles with movable silver (Ag) core and polystyrene (PSt) shell (Ag@PSt nanoparticle) were successfully synthesized at room temperature and under ambient pressure via two steps: γ-irradiation and interfacial-initiated polymerization. Firstly, mono-dispersed Ag nanoparticles with diameters 20 nm were synthesized in inversed microemulsion by reducing silver nitrate under γ-irradiation. Then, Ag nanoparticles were coated with PSt via interfacial-initiated polymerization with cumene hydroperoxide/ferrous sulfate/disodium ethylenediaminetetraacetate/sodium formaldehyde sulfoxylate (CHPO-Fe2+-EDTA-SFS) as the redox initiation pair. The resulted Ag@PSt nanoparticles were identified by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号