首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The use of thermal field-flow fractionation (ThFFF) with multi-angle light scattering (MALS) for the rapid detection of compositional heterogeneity in random copolymers is demonstrated. Soret coefficients were directly calculated from the ThFFF retention times while the MALS detector provided the polymer's radius of gyration (R g) distribution. FromR g, the diffusion coefficient (D) could be calculated and this allowed, in combination with the Soret coefficient, the calculation of the thermal diffusion coefficient (D T). It was shown that theD T distribution can serve as a measure for the chemical composition distribution of random styrene acrylonitrile copolymers. Comparison of ThFFF-MALS results with literature data from ThFFF-hydrodynamic chromatography (HDC) cross-fractionation experiments showed a fair agreement.  相似文献   

2.
Y. Liu  S. Bo 《Chromatographia》2004,59(5-6):299-303
Both absolute molecular weight and molecular sizes (radius of gyration and hydrodynamic radius) of a vinyl-type polynorbornene eluting from size-exclusion chromatography columns were determined by combined with a static and dynamic laser light scattering detector. The hydrodynamic radius of polymer fraction eluting from size-exclusion chromatography columns was obtained from dynamic laser light scattering measurements at only a single angle of 90° by introducing a correction factor. According to the scaling relationship between molecular sizes and molecular weight and the ratio between radius of gyration and hydrodynamic radius, the vinyl-type polynorbornene took a random coil conformation in 1,2,4-trichlorobenzene at 150 °C.  相似文献   

3.
Gel permeation chromatography (GPC) combined with a multi-angle light scattering (MALS) is a very powerful characterization technique because it provides both absolute molecular weight (Mw) and the radius of gyration (Rg) throughout the separated slices obtained by GPC. This combination of Mw and Rg, can be used to obtain information about the conformation of polymer chains in solutions and the branching of molecules. Due to the interesting properties obtained for polymers, it is essential to quantify the effect of different error sources in light scattering measurements as well as in the data treatment that highly affect the accuracy of obtained molar mass and radius of gyration. Usually, the results obtained for Mw and Rg in this analysis are dispersed for determined ranges of retention time and to have both reliable Rg and Mw for calculation, only high confidence data points have to be chosen. This range is arbitrarily chosen by the user for the data observation.In this work a new method of calculation to obtain Rg and Mw by means of GPC–MALS technique has been developed. As a first point, a data analysis procedure was set in order to describe both Rg and Mw vs. retention time and to determine the range where experimental data are confident. Several aspects in the data analysis have been studied. The polynomial fit function, the influence of the concentration of the sample, the reproducibility of the experiments and the conformational scaling law have been investigated by statistic technique in order to quantify the uncertainties involved.  相似文献   

4.
A series of four well‐defined poly(ferrocenyldimethylsilane) (PFS) samples spanning a molecular weight range of approximately 10,000–100,000 g mol−1 was synthesized by the living anionic polymerization of dimethyl[1]silaferrocenophane initiated with n‐BuLi. The polymers possessed narrow polydispersities and were used to characterize the solution behavior of PFS in tetrahydrofuran (THF). The weight‐average molecular weights (Mw ) of the polymers were determined by low‐angle laser light scattering (LALLS), conventional gel permeation chromatography (GPC), and GPC equipped with a triple detector (refractive index, light scattering, and viscosity). The molecular weight calculated by conventional GPC, with polystyrene standards, underestimated the true value in comparison with LALLS and GPC with the triple detection system. The Mark–Houwink parameter a for PFS in THF was 0.62 (k = 2.5 × 10−4), which is indicative of fairly marginal polymer–solvent interactions. The scaling exponent between the radius of gyration and Mw was 0.54, also consistent with marginal polymer–solvent interactions for PFS in THF. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3032–3041, 2000  相似文献   

5.
A common cationic surfactant,n-hexadecylammonium hydrogensulphate, dissolved in concentrated sulphuric acid, has been studied by static and dynamic light scattering. Micelle formation has been observed even in this unusual solvent. An apparent molar mass of 45 500±4.5% was found for the aggregates. A translational diffusion coefficientD 0=5.5×10–9 cm2/s was measured which gave a hydrodynamically effective radius ofR h=17.7 nm. The geometric radius of gyration wasR g=76.2 nm. The ratioR g/R h=4.33 is indicative for rodlike structures. Assuming a polydispersity ofL w/L n=2 this corresponds to a cylinder ofL w=152 nm. An axial ratiop w=(L w/d)=60.4 nm was estimated which leads to a cylinder diameter of 2.53 nm. At surfactant concentrations higher than 5% (w/vol) the rod-like micelles aggregate to form more globular structures. The time correlation function, recorded by dynamic light scattering, exhibited a two-step decay which indicates a bimodal distribution of particle sizes. The fast motion coincides with that of the micelles at low concentrations while the other is slower than the fast one by three orders of magnitude and corresponds to the translational motion of large clusters.  相似文献   

6.
A hyperbranched polyester was fractionated by precipitation to produce 10 fractions with molecular weights between 20 × 103 and 520 × 103 g mol?1. Each of these fractions was examined by size exclusion chromatography, dilute‐solution viscometry, intensity, and quasi‐elastic light scattering in chloroform solution at 298 K. High‐resolution solution‐state 13C NMR was used to determine the degree of branching; for all fractions this factor was 0.5 ± 0.1. Viscometric contraction factors, g′, decreased with increasing molecular weight, and the relation of this parameter to the configurational contraction factor, g, calculated from a theoretical relation suggested a very strong dependence on the universal viscosity constant, Φ, on the contraction factor. A modified Stockmayer–Fixman plot was used to determine the value of (〈r2o/Mw)1/2, which was much larger than the value for the analogous linear polymer. The scaling relations of the various characteristic radii (Rg, Rh, RT, and Rη) with molecular weight all had exponents less than 0.5 that agreed with the theoretical predictions for hyperbranched polymers. The exponent for Rg was interpreted as fractal dimension and had a value of 2.38 ± 0.25, a value that is of the same order as that anticipated by theory for branched polymers in theta conditions and certainly not approaching the value of 3 that would be associated with the spherical morphology and uniform segment density distribution of dendrimers. Second virial coefficients from light scattering are positive, but the variation of the interpenetration function, ψ, with molecular weight and the friction coefficient, ko, obtained from the concentration dependence of the diffusion coefficient suggests that chloroform is not a particularly good solvent for the hyperbranched polyester and that the molecules are soft and penetrable with little spherical nature. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1339–1351, 2003  相似文献   

7.
Aromatic polyamide was synthesized via condensation polymerization of 4‐aminophenyl sulfone (APS) with isophthaloyl chloride (IPC) using N,N‐dimethyl acetamide (DMAc) as a solvent under anhydrous conditions. The purified aramid was studied by laser light scattering (LLS) in dimethyl sulfoxide (DMSO), a thermodynamically good solvent at 20°C. Static and dynamic light scattering studies permitted to determine the weight average molecular weight , radius of gyration , second virial coefficient A2, the hydrodynamic radius RH, and the diffusion coefficient D. Light scattering experiments were conducted at five concentrations ranging from 0.27 to 2.5 g/L. LLS measurement is also a very useful technique to study the aggregation or association in a polymer system as long as the large “clusters” are reasonably stable in time. The intensity autocorrelation function obtained on the quasi‐elastically scattered light showed a simple diffusive relaxation mode. The ratio of radius of gyration to the hydrodynamic radius, i.e. ~ 1.3 indicates that the polyamide chain has coil conformation in DMSO at 20°C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Static light scattering measurements were performed on dilute solutions of monodisperse poly(ethylene oxide) (PEO) in methanol at 25°C. PEOs of five different molecular weights ranging from nominal Mw = 8.6 × 104 to 9.13 × 105 were used. Linear Zimm plots were obtained for all the PEO samples: no downturn was observed at small angles, indicating that no large aggregates of PEO molecules exist in the solution. From the plots, values of the weight-average molecular weight, Mw, the radius gyration, RG, and the second virial coefficient, A2, were successfully determined for respective PEOs. Observed relationship between RG and Mw indicates that methanol is certainly a good solvent for the polymer. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Solution properties for random and diblock copolymers of polystyrene (PS) and poly(methyl methacrylate) (PMMA) have been measured by dynamic and total intensity light scattering in solvents of differing quality. The results are compared with the corresponding properties for PS and PMMA homopolymers of similar molecular weight, in order to determine if interactions between unlike monomers are significant. The hydrodynamic radius (Rh) and diffusion second virial coefficient (kd) for the random copolymer are found to be larger than the corresponding values for the homopolymers in a solvent which is near-theta for the two homopolymers, whereas no such effect is observed for the block copolymer. This suggests that most intrachain interactions occur a relatively short distance along the chain backbone. In a mutual good solvent Rh and kd of the random copolymer are comparable to the average of the values for the homopolymers, indicating that in a good solvent monomer/solvent interactions dominate over monomer/monomer interactions. For an isolated diblock copolymer in a mutual good solvent, there is no evidence that interactions between unlike monomers lead to additional expansion of the entire molecule, as measured by Rh, nor expansion of the individual blocks as probed by light scattering with one block optically masked. However, at low but finite concentration there is evidence (the coefficients of the binary interaction terms in the viscosity and the mutual diffusion coefficient, and the second and third virial coefficients) that a weak ordering effect may exist in block copolymer solutions, far from the conditions where microphase separation occurs. Finally, measurements of ternary polymer-polymer-solvent solutions show no dependence on monomer composition or monomer distribution for the tracer diffusion of probe PS-PMMA copolymers in a PMMA/toluene matrix. This indicate that the frictional interaction is largely unaffected by interactions between unlike monomers. However, there is evidence that the thermodynamic interaction is more unfavorable between a random copolymer and the homopolymer matrix than between a diblock and the matrix. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
The aggregation behavior of carboxymethyl chitosan (CM‐chitosan) with various degrees of deacetylation (DD) and substitution (DS) was characterized with viscometry, gel permeation chromatography (GPC), and GPC coupled with laser light scattering (GPC‐LLS). The results indicate that CM‐chitosan has a strong tendency to form aggregates in aqueous solution and the aggregation behavior depends on DD and DS values. The apparent aggregation number (Nap), the gyration radius (Rg), and the weight fraction of the aggregates (Fa) reached maximum at a DD value of 50%, then decreased, with the DD value deviating from 50%. A higher DS value helped to form aggregates; when the DS value increased from 0.65 to above 1.0, Nap and Rg increased sharply. The dependence of the refractive index increment (dn/dc) on the DD and DS values was related to variation of the charge density and the hydrophobic interaction along the molecular chains. The conformations of CM‐chitosan aggregates were studied by the LLS method. The aggregates showed a spherical shape, and the chain stiffness increased with introduction of the acetyl groups. The DS value had no clear influence on the chain conformation that was observed. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 296–305, 2005  相似文献   

11.
Solution property of hydrogenated polystyrene‐b‐poly(ethylene/butylene)‐b‐polystyrene triblock copolymer (SEBS copolymer) was studied by using static light scattering and dynamic light scattering for cyclohexane and N‐methylpyrrolidone (NMP) solutions. From the values of dimensionless parameters ρ, defined as the ratio of radius of gyration 〈S21/2 to hydrodynamic radius RH, and solubility parameters, SEBS copolymer proved to exist as single chain close to random coil in nonpolar cyclohexane, whereas aggregate into the core‐shell micelle consisting of poly(ethylene/butylene) (PEB) core surrounded by PS shell in polar NMP. The core‐shell micelle formed in NMP is composed of 65 polymer chains, having three times larger average chain density (d = 0.12 g cm?3) than a single polymer chain (d = 0.04 g cm?3) in cyclohexane. The comparison with the aggregation behaviors in other solvents demonstrated that the aggregate compactness of the copolymer depended largely on solvent polarity, resulting in formation of the highly dense PEB core (Rc = 4.5 nm) and the thick PS shell (ΔR = 22.9 nm) in high‐polar NMP. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 588–594, 2010  相似文献   

12.
Small differences in the isolation techniques of lignin can result in significant changes in its molecular structure and configuration. Light scattering (evaluated at 18 different angles in a plane), Atomic Force Microscopy (AFM) and Near Infrared Spectroscopy (NIR) proved very effective for evaluating the characteristics of lignin. Zimm plots were generated using Zimm, Debye and Berry formalisms to evaluate the weight average molecular weight (MW), radius of gyration (rg), hydrodynamic radius (rh) and second virial coefficient (A2). Two types of lignin and nine different solvents were used for the study, to analyze the conformation of lignin molecules in different solvents expected to be used in lignin degradation and subsequent analysis. Absolute MW and rg decreased and the dn/dc increased when the solvent used for lignin was changed from water to sodium hydroxide. The two types of lignin also exhibited different values for all the above estimated parameters. This study also highlighted the differences between the unlyophilized and lyophilized lignin in terms of aggregation, pH dependence and stability over time. This aggregation has never been seen on a ultraviolet (UV) or refractive index (RI) detector that has been used so far for liquid chromatography (LC) reducing the reliability of lignin depolymerization data obtained without light scattering.  相似文献   

13.
We have investigated the properties of cellulose diacetate in solution by using laser light scattering. The cellulose diacetate molecules can form micelles and micellar clusters in acetone besides the individual chains. As the concentration increases, the average hydrodynamic radius (Rh) linearly increases, whereas the ratio of gyration radius to hydrodynamic radins 〈Rg〉/〈Rh〉 linearly decreases. It indicates that the micelles associate and form micellar clusters due to the intermolecular interactions.  相似文献   

14.
Semidilute solution of cotton lint (CC1) in 8 wt % LiCl/N,N‐dimethylacetamide was investigated using static light scattering (SLS) and rheological measurements. The reduced osmotic modulus estimated by SLS measurements for CC1 solutions are proportional to c1.16 in the semidilute region. From the exponent of 1.16, de Gennes' scaling theory derives the relationship between radius of gyration, Rg, and molecular weight, Mw, of CC1 as RgM0.62 This corresponds to the Mark‐Houwink‐Sakurada exponent of 0.86. This exponent is very close to that estimated from scaling analysis of zero shear rate viscosity, that is 0.85. Apparent radius of gyration, Rg,app, estimated by SLS measurements for CC1 solutions are proportional to c?0.5 in the semidilute region. Rg,app indicates the mesh size of polymer entanglement in the semidilute region. On the assumption of the Gaussian behavior of CC1 molecule in the semidilute region, the exponent of ?0.5 gives the relationship between the molar mass between entanglements, Me, and c as following relationship: Mec?1. This agrees with the concentration dependence on plateau modulus estimated from the dynamic viscoelastic measurements. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 2155–2160, 2006  相似文献   

15.
Cuoxam ([CuII(NH3)4](OH)2) is a well known solvent for cellulose. Because of its deep blue colour, it has been used so far only for viscosity measurements. Direct light scattering measurements have not yet been reported in the literature. We carried out static and dynamic light scattering measurements in cuoxam using the blue wavelength of λ0 = 457.9 nm from an Argon ion laser. The measurements were involved with some difficulties mainly caused by colloidal particles of CuO and Cu(OH)2 which could be removed by direct centrifugation of the cells. Furthermore, the scattering intensity had to be corrected for extinction. The refractive index increment was taken from the literature. 12 samples of different molecular weight and different origin were measured, and common power law behavior was found in a region up to about DPw = 1000 for both, the radius of gyration Rg and the hydrodynamic radius Rh, derived from the diffusion coefficient Dz. At higher degrees of polymerization characteristic deviations to lower radii occurred.These deviations are not caused by aggregation since the DPw's agreed with those from the cellulose tricarbanilates. The quantitative analysis of the radii and the angular dependence of the scattered light allowed determination of the chain stiffness. A Kuhn segment length of Ik = 25.6 (±6.2) nm and a characteristic ratio C = 49.6 (±12.0) were derived. These values are close to those for cellulose-tri-carbanilate in dioxane.The reason for the increased stiffening is discussed on the basis of a special H-bond model.  相似文献   

16.
The use of asymmetrical flow field-flow fractionation (AsFlFFF) in the study of heat-induced aggregation of proteins is demonstrated with bovine serum albumin (BSA) as a model analyte. The hydrodynamic diameter (dh), the molar mass of heat-induced aggregates, and the radius of gyration (Rg) were calculated in order to get more detailed understanding of the conformational changes of BSA upon heating. The hydrodynamic diameter of native BSA at ambient temperature was ∼7 nm. The particle size was relatively stable up to 60 °C; above 63 °C, however, BSA underwent aggregation (growth of hydrodynamic diameter). The hydrodynamic diameters of the aggregated particles, heated to 80 °C, ranged from 15 to 149 nm depending on the BSA concentration, duration of incubation, and the ionic strength of the solvent. Heating of BSA in the presence of sodium dodecyl sulfate (1.7 or 17 mM) did not lead to aggregation. The heat-induced aggregates were characterized in terms of their molar mass and particle size together with their respective distributions with a hyphenated technique consisting of an asymmetrical field-flow fractionation device and a multi-angle light scattering detector and a UV-detector. The carrier solution comprised 8.5 mM phosphate and 150 mM sodium chloride at pH 7.4. The weight-average molar mass (Mw) of native BSA at ambient temperature is 6.6 × 104 g mol−1. Incubation of solutions with BSA concentrations of 1.0 and 2.5 mg mL−1 at 80 °C for 1 h resulted in aggregates with Mw 1.2 × 106 and 1.9 × 106 g mol−1, respectively. The average radius of gyration and the average hydrodynamic radius of the heat-induced aggregate samples were calculated and compared to the values obtained from the size distributions measured by AsFlFFF. For comparison static light scattering measurements were carried out and the corresponding average molar mass distributions of solutions with BSA concentrations of 1.0 and 2.5 mg mL−1 at 80 °C for 1 h gave aggregates with Mw 1.7 × 106 and 3.5 × 106 g mol−1, respectively.  相似文献   

17.
Low-charge-density ampholytic terpolymers composed of acrylamide, sodium 3-acrylamido-3-methylbutanoate (NaAMB), and (3-acrylamidopropyl)trimethylammonium chloride were prepared via free-radical polymerization in 0.5 M NaCl to yield terpolymers with random charge distributions. NaOOCH was used as a chain-transfer agent during the polymerization to eliminate the effects of the monomer feed composition on the degree of polymerization (DP) and to suppress gel effects and broadening of the molecular weight distribution. The terpolymer compositions were obtained via 13C NMR spectroscopy, and the residual counterion content was determined via elemental analysis for Na+ and Cl. The molecular weights (MWs) and polydispersity indices (PDIs) were determined via size exclusion chromatography/multi-angle laser light scattering (SEC–MALLS); the terpolymer MWs ranged from 1.3–1.6 × 106 g/mol, corresponding to DPs of 1.6–1.9 × 104 repeat units, with all terpolymers exhibiting PDIs of less than 2.0. Intrinsic viscosities determined from SEC–MALLS data and the Flory–Fox relationship were compared to intrinsic viscosities determined via low-shear dilute-solution viscometry and were found to agree rather well. Data from the SEC–MALLS analysis were used to analyze the radius of gyration/molecular weight (RgM) relationships and the Mark–Houwink–Sakurada intrinsic viscosity/molecular weight ([η]–M) relationships for the terpolymers. The RgM and [η]–M relationships revealed that most of the terpolymers exhibited little or no excluded volume effects under size exclusion chromatography conditions. Potentiometric titration of terpolymer solutions in deionized water showed that the apparent pKa value of the poly[acrylamide-co-sodium 3-acrylamido-3-methylbutanoate-co-(3-acrylamidopropyl)trimethylammonium chloride] terpolymers increased with increasing NaAMB content in the terpolymers and increasing ratios of anionic monomer to cationic monomer at a constant terpolymer charge density. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3236–3251, 2004  相似文献   

18.
Summary: In this paper the chemical structure of an acrylamide-N,N-dihexylacrylamide copolymer was established by IR and NMR. Static and dynamic light scattering in formamide were used in order to evaluate the polymer structural parameters, such as weight-average molecular weight (Mw), second virial coefficient (A2), radius of gyration (RG), the form factor P(q) and the hydrodynamic radius (RH). Additionally to the classical characterization, those results indicated the presence of aggregation, showing that formamide is not a very good solvent, as stated in earlier investigations. The rheological behavior in aqueous solutions was evaluated as a function of the salt concentration. The solutions presented an important viscosity increase in the presence of NaCl and did not show any sensitivity to the presence of CaCl2. This result is in favor of the oil recovery especially in high salinity reservoirs.  相似文献   

19.
在T型混合反应器内通过喷射共沉淀方法合成了吡啶硫酮铜(CPT)。利用扫描电镜和小角度光散射实验手段研究了分散液中吡啶硫酮铜的形貌和大小。通过喷射共沉淀方法获得的初级吡啶硫酮铜颗粒为棒状,在分散液中这些棒状颗粒易发生团聚,形成分形维数为2.1的团聚体。用平均回转半径()表征分散液中团聚体的平均大小,考察了反应温度和反应物化学计量比(吡啶硫酮钠/硫酸铜)对团聚体大小的影响,随着反应温度的降低,团聚体的回转半径逐渐减小;过量的吡啶硫酮钠也有利于降低团聚体的大小,当吡啶硫酮钠过量量达到~25%时,进一步增大吡啶硫酮钠的过量量,团聚体的回转半径不再发生明显变化。  相似文献   

20.
在T型混合反应器内通过喷射共沉淀方法合成了吡啶硫酮铜(CPT).利用扫描电镜和小角度光散射实验手段研究了分散液中吡啶硫酮铜的形貌和大小。通过喷射共沉淀方法获得的初级吡啶硫酮铜颗粒为棒状, 在分散液中这些棒状颗粒易发生团聚, 形成分形维数为2.1的团聚体。用平均回转半径(Rg)表征分散液中团聚体的平均大小, 考察了反应温度和反应物化学计量比(吡啶硫酮钠/硫酸铜)对团聚体大小的影响, 随着反应温度的降低, 团聚体的回转半径逐渐减小;过量的吡啶硫酮钠也有利于降低团聚体的大小, 当吡啶硫酮钠过量量达到~25%时, 进一步增大吡啶硫酮钠的过量量, 团聚体的回转半径不再发生明显变化。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号