首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polysaccharide, kappa‐carrageenan (κC) was chemically modified to achieve a novel superabsorbent hydrogel via graft copolymerization of methacrylamide (MAM) onto the substrate followed by alkaline hydrolysis. Ammonium persulfate (APS) and N,N′‐methylene bisacrylamide (MBA) were used as a free‐radical initiator and a crosslinker, respectively. The saponification reaction was carried out using sodium hydroxide aqueous solution. Either κC‐g‐PMAM or hydrolyzed κC‐g‐PMAM (PMAM: polymethacrylamide) was characterized by FT‐IR spectroscopy. The effect of grafting variables (i.e. concentration of MBA, MAM, and APS) and alkaline hydrolysis conditions (i.e. NaOH concentration, hydrolysis time and temperature) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The swelling capacity of these hydrogels was also measured in various salt solutions. Results indicated that the swelling ratios decreased with an increase in the ionic strength of the salt solutions. This behavior can be attributed to charge screening effect for monovalent cations, as well as ionic crosslinking for multivalent cations. Absorbency of superabsorbing hydrogels was examined in buffer solutions with pH range 1–13. Also, the pH reversibility and on–off switching behavior, at pH values 3.0 and 8.0, makes the synthesized hydrogels good candidates for controlled delivery of bioactive agents. Finally, swelling kinetics in distilled water and various salt solutions was preliminary investigated. Results showed that the swelling in water was faster than in saline solutions. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
A novel biopolymer-based hydrogel composite was synthesized through chemical crosslinking by graft copolymerization of partially neutralized acrylic acid onto the hydrolyzed collagen. The Taguchi method, a robust experimental design, was employed for the optimization of the synthesis based on the swelling capacity of the hydrogels. This method was applied for the experiments and standard L16 orthogonal array with five factors and four levels. In the synthesis of the composite superabsorbent, N,N′-methylene bisacrylamide (MBA) as crosslinker, ammonium persulfate (APS) as initiator, acrylic acid (AA) as monomer, neutralization percent (NU), and collagen/kaolin weight ratio were used as important factors. From the analysis of variance of the test results, the most effective factor controlling equilibrium swelling capacity was obtained and maximum water absorbency of the optimized final product was found to be 674 g/g. The surface morphology of the gel was examined using scanning electron microscopy. Furthermore in this research, swollen gel strength of composite SAPs already swollen under realistic conditions (saline solution absorbency under load) was determined.  相似文献   

3.
Batch adsorption experiments were carried out for the removal of malachite green (MG) cationic dye from aqueous solution using novel hydrogel nanocomposite that was prepared by graft copolymerization of acrylic acid (AA) onto kappa-carrageenan (κC) biopolymer in the presence of a crosslinking agent, a free radical initiator and aminosilica-functionalized TiO2 nanoparticles (κC-g-PAA/TiO2–NH2). The factors influencing adsorption capacity of the adsorbents such as initial pH value (pH0) of the dye solutions, TiO2–NH2 content (wt%), initial concentration of the dye, amount of adsorbents, and temperature were investigated. The adsorption capacity of hydrogel nanocomposite for MG was compared with hydrogel. The adsorption behaviors of both adsorbents showed that the adsorption kinetics and isotherms were in good agreement with a pseudo-second-order equation and the Langmuir equation. The high adsorption capacity (q m= 666–833 (mg/g)) and the favorable heterogeneity factor (n = 1.2–1.5) calculated from isotherm equations show the efficiency of the novel adsorbents.  相似文献   

4.
In this contribution we have developed a collagen-based highly porous hydrogel by neutralizing the grafted poly(acrylamide-co-acrylic acid) after gel formation. Preparation of the hydrogels involved free radical polymerization of a combination of hydrolyzed collagen, acrylic acid (AA), acrylamide (AAm) and distilled water, in appropriate amounts and contained a crosslinking agent called N,N′-methylene bisacrylamide (MBA). The chemical structure of the hydrogels was characterized by means of FTIR spectroscopy, DSC and TGA thermal methods. Morphology of the samples was examined by scanning electron microscopy (SEM). Systematically, the certain variables of the graft copolymerization were optimized to achieve maximum swelling capacity. The absorbency under load (AUL) and centrifuge retention capacity (CRC) were measured. The swelling ratio in various salt solutions was also determined and additionally, the swelling of hydrogels was measured in solutions with pH ranged 1-13. The synthesized hydrogel exhibited a pH-responsiveness character so that a swelling-collapsing pulsatile behavior was recorded at pH 2 and 8.  相似文献   

5.
Highly swelling P(2-acrylamido-2-methyl-1-propanesulfonic acid- co-acrylic acid) (P(AMPS-co-AAc)) superabsorbent hydrogel was synthesized in aqueous solution by a simple one-step using glow-discharge electrolysis plasma technique, in which N,N’-methylenebisacrylamide was used as a crosslinking agent. The structure, thermal stability and morphology of P(AMPS-co-AAc) superabsorbent hydrogel were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. A mechanism for synthesis of P(AMPS-co-AAc) superabsorbent hydrogel was proposed. The reaction parameters affecting the equilibrium swelling (i.e., discharge voltage, discharge time, macroscopic temperature of the liquid phase, mass ratio of AMPS to AAc, and content of crosslinker) were systematically optimized to achieve a superabsorbent hydrogel with a maximum swelling capacity. The hydrogel formed which absorbed about 1,685 g H2O/g dry hydrogel of the optimized product was used to study the influence of various pH values and salts solutions (NaCl, KCl, MgCl2, and CaCl2) on the equilibrium swelling. In addition, swelling kinetics in distilled water and on–off switching behavior were preliminarily investigated. The results showed that superabsorbent hydrogel was responsive to the pH and salts.  相似文献   

6.
A novel and smart biopolymer-based hydrogel was synthesized by graft copolymerization of acrylic acid onto the salep backbones. The new superabsorbent hydrogel was synthesized via simultaneous crosslinking and graft copolymerization of acrylic acid (AA) monomer onto salep backbones using radiochemical methods. In radiochemical methods, γ-rays as initiator, energy source and crosslinker are applied. In our experiments, the effects of reaction variables such as relative contents of salep and AA, as well as γ-rays total dose were examined. According to water absorbency of the entitled network, the best synthesis condition is reported. FTIR spectroscopy, SEM photograph and TGA analysis were used for confirming the structure of the final product and a mechanism for superabsorbent hydrogel formation is also suggested. Furthermore, in this research, several factors affecting the swelling behavior of hydrogel including pH of medium, sensitivity to the salt solution and mixture of solvents were studied.  相似文献   

7.
A novel optimized chelating hydrogel was synthesized via graft copolymerization of acrylamide and 2‐hydroxyethyl methacrylate (as two‐dentate chelating co‐monomer) onto salep (a multicomponent polysaccharide obtained from dried tubers of certain natural terrestrial orchids) using N,N′‐methylenebisacrylamide as a crosslinker and ammonium persulfate as an initiator. Reaction parameters (N,N′‐methylenebisacrylamide and ammonium persulfate amounts as well as acrylamide/2‐hydroxyethyl methacrylate weight ratio) affecting the water absorption of the chelating hydrogel were optimized using a systematic method to achieve a hydrogel with high swelling capacity as possible. Heavy metal ion adsorption capacity of the optimized hydrogel for metal ions [Cu (II), Pb (II), Cd (II), and Cr (III)] were investigated in aqueous media containing different concentrations of these ions (5–50 ppm). The results showed that the hydrogel have great potential for heavy metal removal from aqueous solutions. The hydrogel formation was confirmed by Fourier transform infrared spectroscopy, and surface morphology study of the hydrogel was performed by scanning electron microscope. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
In this study, a poly(N-vinylpyrrolidone)-graft-poly(N-isopropylacrylamide) hydrogel (PVP-g-PNIPAM) was synthesized through the “grafting from” process. Grafting of temperature responsive poly(N-isopropylacrylamide) (PNIPAM) brushes was carried out from the poly(N-vinylpyrrolidone) (PVP) synthesized with free radical polymerization and functionalized with ATRP initiator, PVP–Br, which was performed through a bromination reaction between pendant allylic groups of the PVP and N-bromosuccinimide (NBS). The structure of the initiator and PVP-g-PNIPAM was characterized by ultraviolet and visible (UV/Vis) absorption, nuclear magnetic resonance (NMR) spectroscopy and Fourier transform infrared (FTIR) measurements. Scanning electron microscope (SEM) morphology measurement displayed some dendritic grafted chains dangling onto the pore wall of the hydrogel.The characteristic in response to the change in environmental temperature was investigated by the fluorescence anisotropy and UV/Vis transmittance measurements. The results showed that the PVP-g-PNIPAM hydrogel exhibited rapid response to the change in environmental temperature due to free and mobile graft chains compared with the P(VP-co-NIPAM) hydrogel, which was prepared by free radical copolymerization in this work.  相似文献   

9.
Superabsorbent polymers (SAPs) and composites (SAPCs) were prepared entirely by graft copolymerization of polyacrylamide (PAM) onto hydroxyethyl cellulose (HEC), using potassium persulfate (KPS) as an initiator, and N,N′-methylenebisacrylamide (MBA) as a crosslinker, in an aqueous solution. The extent of grafting was evaluated from % grafting efficiency (%GE) for various HEC/AM ratios, and a near optimal ratio was determined. Influences of various preparation parameters, i.e., the ratio of HEC/AM, amount of initiator and crosslinker, reaction temperature and time, and amount of filler on water swelling capacity of SAPs and SAPCs were studied. An FT-IR determination confirmed that the PAM was successfully grafted onto the HEC backbone, by showing absorption bands of the HEC backbone and new absorption bands from the grafted copolymer. The swelling capacity of SAPs and SAPCs depended strongly on different parameters, and the maximum swelling capacity was over 426 g/g and 538 g/g for the SAPs and SAPCs, respectively.  相似文献   

10.
A series of hydrogels based on N-isopropylacrylamide, sodium acrylate, and N-tert-butylacrylamide were synthesized by free radical polymerization in a mixture of dioxane and water with tetra(ethylene glycol) diacrylate as the crosslinker and benzoyl peroxide as the initiator. The swelling behavior including the swelling rate of the crosslinked gels in water was studied with gravimetric method. The swelling ratio of the gel (0.1 mol% crosslinking) can reach 420 g/g at 20 °C and such a gel can release 96% of the water absorbed at 40 °C. The lower critical swelling temperature (LCST) of the copolymers can be adjusted by changing the chemical composition of the polymers. Such crosslinked gels can be potentially used as thermosensitive superabsorbent because of their high water uptake and thermal sensitivity.  相似文献   

11.
A novel hydrogel has synthesized by grafting polyacrylamide chains onto hydroxypropyl methylcellulose in presence of potassium persulphate as initiator using solution polymerization technique. The reaction was carried out in homogeneous aqueous medium. The effect of reaction parameters on percentage of grafting (% G) and grafting efficiency (% GE) were discussed. The parameters were varied systematically to achieve the best hydrogel. Developed hydrogels were characterized by various materials characterization techniques. The dynamic and equilibrium swelling properties of hydrogels were investigated as a function of pH and time in various buffer solutions similar to that of gastric and intestinal fluid. Results showed that with increase in % G and % GE, the rate of swelling decreases, which can opens the door for further study of their utilization as matrices for controlled/sustained/targeted drug delivery.  相似文献   

12.
Polyethyleneimine(PEI)/acrylamide(AAM) hydrogels were synthesized by γ-radiation-induced polymerization/crosslinking of aqueous mixtures containing different ratios of PEI and AAM. The gel percentage and equilibrium degree of swelling (EDS) of the synthesized hydrogels were investigated. The compositions of the hydrogels produced were found to be different from the feed composition. Ion-chromatography technique was used to determine the amount of Pb (II) and Cd (II) absorbed by the hydrogel. The maximum binding capacity of the PEI/AAM hydrogels, for Pb and Cd was found to be 19 and 12.6 mg/g, respectively, (at 100 ppm). PEI/AAM hydrogels had better metal uptake efficiency than the pure AAM hydrogel at concentrations less than 50 ppm. Pure PEI was observed to be highly degrading type polymer on exposure to gamma radiation. TGA and FT-IR techniques were used to characterize the prepared hydrogels.  相似文献   

13.
In this study, new hydrogels in rod shape were prepared from N-acryloyl-tris-(hydroxymethyl)aminomethane (NAT) using three different crosslinking agents: poly(2-methyl-2-oxazoline) bismacromonomer (BM), ethylene glycol dimethacrylate (EGDMA) and N,N′-methylenebisacrylamide (BIS). Dimethylformamide (DMF) was used as solvent and 2,2′-azobisisobutyronitrile (AIBN) as initiator. Polymeric matrices with different properties were obtained by free radical polymerization by changing the crosslinker (BM, EGDMA or BIS) or the concentration of BM. The hydrogel structures were characterized by high resolution magic angle spinning (HRMAS) NMR technique. Swelling experiments and rheological studies were used to test the water absorption capacity and viscoelastic properties of the hydrogels, respectively. For a given NAT/crosslinking agent molar ratio, the hydrogel synthesized with BM displays higher water absorptive capacity and larger range of linear viscoelasticity than those synthesized with BIS or EGDMA. The relatively larger hydrophilic character of the former and the lower crosslinking density generated by the longer molecules of BM might be the cause of this behavior. The results also reveal that water diffuses into the network following a non-Fickian mechanism. This is concluded from the value of the diffusion exponent n, which is higher than 0.50. The elastic modulus and the equilibrium water content (EWC) measurements suggest that these materials may have potential application as biomaterials.  相似文献   

14.
A novel poly(acrylic acid)‐iron rich smectite (IRS) superabsorbent composite was synthesized by graft copolymerization reaction of acrylic acid (AA) in the presence of N,N‐methylenebisacrylamide (MBA) as a crosslinker. IRS was used to strengthen the hydrogel products in the polymerization process. Water absorbencies for these superabsorbent composites in water and saline solutions were investigated. IRS caused a reduced equilibrium swelling as low as 8–26%. However, grafted IRS particles resulted in improved gel strength as high as 66% compared to the IRS‐free sample. IRS modified superabsorbent hydrogel composites exhibited higher thermal stability compared to the IRS‐free sample. The pH dependent reversible swelling behavior of hydrogels was also investigated. It is found that the swelling process is pH dependent and reversible for synthesized superabsorbent. Superabsorbent hydrogel composites were characterized by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). FTIR spectroscopy was confirmed grafting of acrylic chains onto the surface of IRS particles. From the standpoint of these results, these strengthened and thermostabilized hydrogels may be considered as good candidates for a controlled release study and agricultural applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
In this article, a novel triple-stimuli hydrogel was prepared by simultaneous formation of super paramagnetic iron oxide nanoparticles (SPION) and crosslinking of poly (acrylic acid) grafted onto kappa carrageenan (κC-g-PAA). The structure, thermal stability, surface morphology, and magnetic property of the κC-g-PAA/SPION hydrogel were characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy with energy dispersive X-ray analysis (SEM–EDAX), transmission electron microscopy (TEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). Moreover, swelling capacity of the obtained hydrogel was measured at different temperature, pH, and magnetic-field to assess the sensitivity of κC-g-PAA/SPION hydrogel. This synthetic hydrogel was also examined as a controlled drug delivery system and defrasirox release was investigated at different temperature, pH, and magnetic-field. The in vitro antibacterial activity of κC-g-PAA/SPION hydrogel was studied against Escherichia coli and Staphylococcus aureus bacteria where the results showed no antibacterial activity of this new hydrogel. In vitro biocompatibility experiments were undertaken using human bladder epithelial cell line HTB 5637. These results indicated the synthesized κC-g-PAA/SPION hydrogel are nontoxic that will be useful for biomedical applications.
Figure
We introduce a novel triple-stimuli and biocompatible kappa-carrageenan-g-poly(acrylic acid)/SPION nanocomposite as a drug delivery system  相似文献   

16.
Novel composite hydrogels were synthesized by grafting of acrylic acid onto pineapple peel cellulose and addition of kaolin or sepia ink in ionic liquid 1-butyl-3-methylimidazolium chloride, using potassium persulfate as a free radical initiator and N,N′-methylenebisacrylamide as a crosslinking agent. The structure and morphology of the prepared hydrogels were characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscope, X-ray diffraction, thermogravimetry and differential scanning calorimetry. Kaolin and sepia ink improved the thermal stability of the hydrogels. Swelling studies on the prepared hydrogels indicated sepia ink and kaolin affected the swelling ratio and pH-responsive properties. The optimum swelling pH value for the hydrogels was shifted from 7.0 to 12.0 in the presence of sepia ink. The effects of kaolin and sepia ink contents on methylene blue adsorption capacity of the prepared hydrogels were also investigated. The optimum methylene blue adsorption capacity reached 153.85 mg/g at 10% of kaolin and 142.21 mg/g at 20% of sepia ink. The pseudo-second-order kinetic model fit well with the experimental results, indicating the adsorption was chemisorption behavior.  相似文献   

17.
The study presents the preparation of a semi-synthetic hydrogel based on poly(N-isopropyl acrylamide-co-diethylene glycol diacrylate) inserted onto the collagen porous membrane. The synthesis of the hydrogels was performed through radical copolymerization of N-isopropyl acrylamide (NIPAM) with diethylene glycol diacrylate (DEGDA) also as crosslinking agent, using ammonium persulfate as initiator and N,N,N',N'-tetramethylethylene diamine as activator, and it was achieved in the presence of the collagen matrix. The prepared hydrogels were characterized by Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. The swelling behaviour of the semi-interpenetrated polymer network related on the hydrogel composition, it was also evaluated. The pore sizes of the synthesized hydrogels, much larger than the typical mesh size of a conventional hydrogel, allow to consider the hybrid hydrogel based on the inserted poly(NIPAM-co-DEGDA) onto collagen fibrils as a super-porous hydrogel.  相似文献   

18.
Carboxymethylchitosan (CMC) hydrogels containing thermo-responsive poly(N-isopropylacrylamide) (poly(NIPAAm)) and pH-responsive poly(acrylic acid) (poly(AA)) were prepared via a free radical polymerization in the presence of hexamethylene-1,6-di-(aminocarboxysulfonate) crosslinking agents. A proper ratio of CMC to NIPAAm and AA used in the reaction was investigated such that the thermo- and pH-responsive properties of the hydrogels were obtained. Water swelling of the hydrogels was improved when the solution pH was in basic conditions (pH 10) or the temperature was below its lower critical solution temperature (LCST). Effects of the change in solution temperature and pH on water swelling properties of the hydrogel as well as the releasing rate of an entrapped drug were also investigated. The hydrogels were not toxic and showed antibacterial activity against Straphylococcus aureus (S. aureus). The pH- and thermo-responsive properties of this novel “smart” hydrogel might be efficiently used as dual triggering mechanisms in controlled drug release applications.  相似文献   

19.
Recently, a considerable amount of research has centered on uniquely structured polymers synthesized through self-propagating frontal polymerization. The obtained polymer materials have better features than those obtained by using the classical batch route. The additional advantages are short reaction times and low cost. This work describes the first frontal polymerization synthesis of a graft copolymer superabsorbent hydrogel of acrylic acid onto starch at high monomer and initiator concentration. The effects of varying the relative amounts of the reaction components on the most relevant parameters relating to frontal polymerization were explored. The front velocity dependence on initiator concentration could be fit to a power function. The temperature profiles were found to be very sharp with a maximum temperature below 150 degrees C, which was responsible for high monomer conversion. The ultimate properties of the product appear to depend on the polymerization front velocity and the temperature. The high-temperature and rapid temperature increase at the polymerization front led to products with interconnected porous structures caused by the evaporation of water. So, a fast-swelling, highly absorbing hydrogel with respect to batch polymerization was obtained.  相似文献   

20.
Hyperbranched polyglycidol (PGLD) was synthesized via anionic ring‐opening polymerization of glycidol using a special anionic initiator with multiple initiation sites. The resultant polymers were characterized by 1H and 13C‐NMR spectra for confirming their structures, which consisted of linear, hyperbranched and dendritic structures. Molecular weight characteristics were determined by means of the gel permeation chromatography (GPC). With the intention of investigating the possibility of broad applications, PGLD hydrogel films were prepared using various crosslinking agents, i.e., glutaraldehyde and some dicarboxylic acids, and their physical properties such as swelling behavior and tensile (or Young's) modulus were measured and compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号