首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poly(acrylic acid-co-itaconic acid) copolymers containing pendent methacrylates were synthesized and used to formulate redox-initiated in situ cured glass-ionomer cements (GICs) by mixing with reactive glass fillers (Fuji II LC). Various formulations for the redox initiator were studied, and flexural strength (FS) was used as a screening tool for optimization. Effects of molecular weight (MW), grafting ratio, comonomer, polymer content in the liquid composition, powder/liquid (P/L) ratio, and aging on FS were investigated. The results show that the in situ cured GICs demonstrated higher FS (89.6-123.2 MPa), as compared to commercial Fuji II LC GIC (57.1 MPa). The optimal concentrations for redox initiators were found to be 0.15% (by weight) for K2S2O8 and 0.2% for ascorbic acid (or 0.6% for microencapsulated ascorbic acid), respectively. Effects of MW, grafting ratio, P/L ratio and polymer content in the liquid formulation were significant. During aging, the cement showed an increase in strength over 24 h and then no change for time periods up to six months. SEM analysis supports the strength data associated with the formulations. The exotherm and setting time suggest that novel redox-initiated resin-modified GICs hold promise as biocompatible and workable cement for orthopedic applications.  相似文献   

2.
Vinyl-containing poly(acrylic acid-co-itaconic acid) copolymers were synthesized and used to formulate light-curable cements containing reactive glass fillers (Fuji II LC). The conditions for light curing were studied and optimized. Effects of molecular weight (MW), grafting ratio, comonomer, liquid composition, powder/liquid (P/L) ratio, glass powder and aging were evaluated. The results show that the vinyl-containing glass-ionomer cements (GICs) prepared in this study exhibit higher compressive strength (CS, 225.6 MPa), diametral tensile strength (DTS, 28.4 MPa) and much higher flexural strength (FS, 116.4 MPa), as compared to commercial Fuji II LC GIC (186.6 in CS, 19.1 in DTS and 57.1 in FS). The optimal light-exposure time was found to be around 10 min, and concentrations of CQ and DC were 0.5% (by weight) and 1.0%, respectively. Effects of MW, grafting ratio, P/L ratio and content of polymer in the liquid formulation were significant. The highest strengths were found for the optimal formulations where the MW was 15,000 (weight average), grafting ratio 25 mol%, P/L ratio 2.7 and liquid composition 50:20:30. During aging, the cement showed an increase of strength over the first week and then no change for a month. SEM analysis suggests that more integrated microstructures and smaller glass particles can lead to higher FS and higher polymer content in GICs leads to tough fracture surface and plastic deformation.  相似文献   

3.
Biodegradable trifunctional oligomer was synthesized from polycaprolactone and glutamic acid and characterized by Fourier‐transform infrared (FTIR) and proton nuclear magnetic resonance (1H NMR) spectroscopies. Injectable and in situ crosslinkable polymer networks were fabricated by the copolymerization of oligomer with triethylene glycol dimethacrylate (TEGDMA) and used to evaluate the initial compressive strengths, viscosities, shrinkages, thermal stabilities, and biodegradabilities in the forms of polymer network neat resin and their composites with β‐tricalcium phosphate. The initial compressive strengths (CS) values of neat resins ranged from 9.54 to 187.6 MPa. Both neat resins and composites had polymerization shrinkage ranging from 0% to 11.7%, which increased with increasing of TEGDMA contents in resin. Moreover, in polymer composite resins, shrinkage values decreased with increasing filler level from 0% to 4.6%, and exothermic evolution values decreased from 33.5°C to 29.7°C as increasing filler level. The composite with the formulation of (polycaprolactone)‐glutamate triacrylate (PCLGTA)/TEGDMA (25/75) and powder/liquid (P/L) ratio of 1.0 exhibited the highest exothermal and lowest shrinkage values. The increase of oligomer in the formulation led to an increase in viscosity.  相似文献   

4.
Six methacrylate or acrylate derivatives of natural amino acids were synthesized and characterized. Based upon these monomers, six terpolymers [poly(acrylic) acid-co-itaconic acid-co-amino acid] were prepared and characterized. The synthesized polymers were used to formulate glass-ionomer cements (GICs) using Fuji II glass filler. The effects of the molecular weight (MW) and powder/liquid (P/L) ratio were evaluated. Scanning electron microscopy (SEM) was used to examine the fracture surfaces of the selected cement specimens. Results show that all the amino acid modified GICs exhibited higher compressive strengths (CS, 193-236 MPa) and much higher flexural strengths (FS, 55-71 MPa) as compared to commercial Fuji II GIC (191 in CS and 16 in FS). Both MW and P/L ratio affected the strength of the formed cement. It was important to find the optimal MW and P/L ratio to obtain the highest FS. In this study, optimized MW (number average) of the polyacids and P/L ratio were around 50,000 and 2.7/1, respectively. The microstructures of the fracture surfaces helped to explain the strength differences among the materials tested in the study. SEM analysis suggests that more integrated microstructures and fewer defects can lead to higher FS.  相似文献   

5.
Subject of this paper is to investigate the hydration process of Portland limestone cement containing 10-35% limestone. Cements, produced by co-grinding of clinker, limestone and gypsum, were hydrated for periods 6 h to 28 d and were studied by means of TG and XRD. The Ca(OH)2 content of the cements containing limestone is higher than in pure cements, specifically for 10% limestone content and ages more than 1 day. These results are in accordance with the strength development of the studied cements. In earlier ages the Ca(OH)2 content is slightly lower in the limestone cements and independent of the limestone content. After 1 day curing, the increase of limestone addition causes a relative increase of the non evaporable water. The XRD patterns indicated the presence of carboaluminates in the hydrated limestone cements. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
To improve the properties of steel slag blended cements, a chemical activator was added into blended cements, the mechanical properties and durability of steel slag blended cements were investigated. The results show that steel slag in blended cement pastes presents low hydraulic activity and makes practically no contribution to strength development. After the addition of chemical activator, the mechanical properties and durability of ternary blended cements are increased significantly. The hydration process and micro-structural development of blended cement was investigated by isothermal calorimeter and scanning electric microscope, respectively. Steel slag started hydration in the first 3?days in the presence of chemical activator, steel slag and granulate blast furnace slag reacted with Ca(OH)2 to form a dense microstructure as curing proceeded. Therefore, both early and late compressive strengths of steel slag blended cement with 35% cement clinker and 30% steel slag can be comparable with those of Portland cement.  相似文献   

7.
The photo curing of a formulation consisting of N,N-bismaleimido-4, 4-diphenylmethane (BMI), which is most widely used in commercial thermal curing formulations, was performed. Parameters, such as initiator, co-initiator and temperature, which affect the curing rate and enthalpy, were studied using differential photocalorimeter. BMI undergoes copolymerization with 4-hydroxybutylvinylether (HBVE), when exposed to UV radiation, in presence of the photo initiator, Triphenylphosphine oxide (TPO). Diallylbisphenol A has been observed to be an efficient co-initiator, which improves the reaction rate coefficient and enthalpy of the photo curing process for the system BMI/HBVE/TPO.  相似文献   

8.
The effects of a silane coupling agent on curing characteristics and mechanical properties of bamboo fibre filled natural rubber composites were studied. Scorch time, t2 and cure time, t90 of the composites decrease with increasing filler loading and with the presence of a silane coupling agent, Si69. Mooney viscosity also increases with increasing filler loading but at a similar filler loading shows lower value with the presence of Si69. The mechanical properties of composites viz tensile strength, tear strength, hardness and tensile modulus were also improved with the addition of Si69.  相似文献   

9.
The high polymerization temperature of acrylic bone cements can cause arthroplasty failure because of the thermal necrosis of surrounding bone tissue. To reduce this undesired effect we have developed novel acrylic bone cement composites containing a phase change material (PCM). As PCM poly(ethylene glycol) (PEG) of different molecular weight was applied and the effect of its incorporation on curing parameters, mechanical and morphological properties of acrylic bone cement was investigated. A significant decrease in maximum temperature from 65.8°C to 47.4°C and slight increase of setting time were observed. PEG introduction also contributed to the thermal stability of acrylic bone cement increase. SEM investigation of modified bone cement confirmed that the microstructure does not alter considerably because of PEG content. It was found that both PEG addition and incubation test contribute to an inconsiderable decrease in mechanical strength of bone cement. However, the mechanical strength increase can be caused by the fresh bone tissue incorporation into the pores appearing in bone cement. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
2,2′-bis[4-(methacryloxy-2-hydroxy-propoxy)-phenyl]-propane (BIS-GMA)/silica composites were fabricated by visible light cure. The degree of conversion (DC) of the dental composites were measured by Fourier transform infrared (FT-IR) spectroscopy. The effects of several factors on DC were examined. The chosen factors were filler content, diluent concentration, radiation time, posture effect, cure mode, initiator concentration, and inhibitor concentration. DC increased with increasing silica content, diluent concentration, and initiator concentration. Cure time, postcure and cure mode respectively caused significant DC increases. The DC of the same visible light cure mode was in proportion to dimetral tensile strength (DTS).  相似文献   

11.
本文将磷酸氢钙(CaHPO4·2H2O,DCPD)添加到硅酸三钙(Ca3SiO5,C3S)骨水泥中,采用X射线衍射(XRD),扫描电镜(SEM),万能力学测试机等手段对不同添加量的骨水泥进行表征,考察添加DCPD对硅酸三钙骨水泥性能的影响。实验表明,C3S材料中添加10% DCPD有着优于单纯C3S骨水泥的水化性能,骨水泥的初凝时间从92 min缩短到80 min;添加20%~30% DCPD能提高材料的短期力学强度,可以实现其短期抗压强度的优化;添加30%~40% DCPD的材料有着优良的生物活性与适中的可降解性能。结果表明,通过添加DCPD优化C3S水泥的性能,对各种不同性能具有DCPD添加量的依赖性。通过进一步优化DCPD添加量,将可能获得优良的生物活性骨缺陷填充材料。  相似文献   

12.
In this study, three types of cementitious composites based on (i) white Portland cement and sand (cement-to-aggregate 1:3, and water-to-cement 0.50), (ii) white Portland cement and marble powder (cement-to-aggregate 1:2, and water-to-cement 0.60), and (iii) white Portland cement and marble powder with polycarboxylate-based admixture (HRWR) (cement-to-aggregate 1:2, and water-to-cement 0.40?+?HRWR) were studied. Their states after 28 and 120?days of water curing were evaluated by measurement of physical?Cmechanical properties, such as density, compressive strength and porosity. Thermal analysis, X-ray diffraction analysis and scanning electron microscopy were used to identify the crystal phases and their morphology. The experimental data show that the white cement mortars with higher water content exhibit larder variety of newly formed phases, like hydration products of the C?CS?CH type. The structure of mortars with polycarboxylate-based admixture is so dense that there is no possibility of crystal hydrates development at late curing ages. The use of marble as filler leads to a partial inclusion of carbonate ions in the newly formed hydrated phases (carbo-aluminates).  相似文献   

13.
Fabrication of biodegradable composites applicable as hard tissue substitutes consisting of poly(ε‐caprolactone fumarate) (PCLF), methacrylic acid (MAA), and hydroxyapatite (HA) was investigated. PCLF macromers were synthesized by reaction of PCL diol with fumaryl chloride in the presence of propylene oxide and characterized by gel permeation chromatography, FTIR, and 1H NMR spectroscopy. Composites were fabricated by incorporating HA as inorganic filler in PCLF matrix which followed by thermal curing of the composition using benzoyl peroxide and MAA as a free radical initiator and reactive diluent, respectively. Uniform distribution of the fine ceramic phase in the polymer matrix was elucidated by scanning electron microscopy. The effects of the initial macromer molecular weight and the filler volume fraction on mechanical properties and cytotoxicity of the composites were also examined. Significant enhancement in the mechanical properties was observed upon increasing HA content and/or initial PCLF molecular weight. The biocompatibility of the specimens was also improved with increasing ceramic phase. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Changes in curing behaviour of aminoresins during storage   总被引:2,自引:0,他引:2  
Summary The curing behaviour of commercial UF and MUF resins, stored at room temperature nearly up to gelation, is studied by simultaneous TG-DTA technique and structural changes of resins are also followed during aging. On the basis of 13C NMR spectra, the main chemical reaction during UF resin storage is the formation of methylenes and dimethylene ethers linked to secondary amino groups. Aging of resins results in a decrease of cure rate which is related to lower concentration of active functional groups and decrease in molecular mobility. On DTA curve, the resin with higher content of methylol groups reveals the curing exotherm earlier. With decreasing methylol content during storage, the peak maximum of exotherm is shifted to higher temperature value. Advanced polycondensation and sedimentation processes during storage produce partly locked in macromolecule structure water, and the water evaporation endotherm on DTA curve shifts to considerably higher temperature. The aged MUF resins are chemically less changed than UF resins and the aging process mainly involves noncovalent network formation due to complex molecular structure.  相似文献   

15.
The effect of ZnO has already been studied for Portland cement, but the study of its impact on hybrid pastes is scarce. Thus, in this investigation, the influence of ZnO addition on hydration, compressive strength, microstructure, and structure of hybrid pastes is presented. The analyses were made by setting time tests, compressive strength tests, X-ray diffraction, Fourier-transform infrared spectroscopy, thermogravimetric analysis with differential scanning calorimetry, and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The results indicate that the setting time of the cements was delayed up to 39 min with additions of 3 wt% ZnO. Alternatively, the higher values of compressive strength were observed when 0.5 wt% ZnO was added to the cements for all curing days. In addition, no important differences in the microstructure of samples with different additions of ZnO were observed after 28 days of curing. It is expected that the use of ZnO contributes to the delay of the setting time and the increase of the compressive strength without negatively modifying the microstructure of hybrid pastes.  相似文献   

16.
This paper studies the addition (0–40% w/w) of natural zeolite (NZ, 84% clinoptilolite) in blended cements made with Portland cement (PC) with low and medium C3A content. The isothermal calorimetry was used to understand the effect of NZ on the early cement hydration. For low C3A cement, the addition of NZ produces mainly a dilution effect and then the heat released curve is similar to plain cement with lower intensity. For medium C3A cement, the curve shows the C3S peak in advance and a high intensity of third peak attributed to C3A hydration. The high cation fixed of NZ reduces the ions concentration (especially alkalis) in the mixing water stimulating the PC hydration. The flowability decreases when the NZ replacement level increases. Results of Fratini’s test show that NZ with both PCs used presents slow pozzolanic activity. At early age, XRD and FTIR analyses confirm that hydration products are the same as that of the corresponding PC and the CH is progressively reduced after 28 days and some AFm phases (hemi- and monocarboaluminate) appear depending on the NZ percentage and the PC used. For low replacement levels, the compressive strength is higher than the corresponding PC from 2 to 28 days. For high replacement levels, the early compressive strength is lower than that of corresponding plain PC and the pozzolanic reaction improves the later compressive strength of blended cements.  相似文献   

17.
Differential scanning calorimetry was used to study the influence of an epoxy reactive diluent, vinylcyclohexane dioxide, on the curing reaction of a polymeric system composed of diglycidyl ether of bisphenol A (n=0) and 1,2-diaminecyclohexane (DCH). Heat evolution and glass transition temperature, were measured in terms of the added diluent percentage. Experimental results show that both the curing degree and the glass transition temperature of the polymeric system decrease with an increase in the diluent percentage. Dynamic mechanical analysis of several samples also showed that T g decreases with the increase of diluent percentage, thus corroborating DSC measurements.  相似文献   

18.
This article demonstrates the possibility of producing alkali-activated hybrid cements based on fly ash (FA), and construction and demolition wastes (concrete waste, COW; ceramic waste, CEW; and masonry waste, MAW) using sodium sulfate (Na2SO4) (2–6%) and sodium carbonate (Na2CO3) (5–10%) as activators. From a mixture of COW, CEW, and MAW in equal proportions (33.33%), a new precursor called CDW was generated. The precursors were mixed with ordinary Portland cement (OPC) (10–30%). Curing of the materials was performed at room temperature (25 °C). The hybrid cements activated with Na2SO4 reached compressive strengths of up to 31 MPa at 28 days of curing, and the hybrid cements activated with Na2CO3 yielded compressive strengths of up to 22 MPa. Based on their mechanical performance, the optimal mixtures were selected: FA/30OPC-4%Na2SO4, CDW/30OPC-4%Na2SO4, FA/30OPC-10%Na2CO3, and CDW/30OPC-10%Na2CO3. At prolonged ages (180 days), these mixtures reached compressive strength values similar to those reported for pastes based on 100% OPC. A notable advantage is the reduction of the heat of the reaction, which can be reduced by up to 10 times relative to that reported for the hydration of Portland cement. These results show the feasibility of manufacturing alkaline-activated hybrid cements using alternative activators with a lower environmental impact.  相似文献   

19.
Polyurethane (PU) composite foams were successfully reinforced with different concentrations (1 wt%, 2 wt%, 5 wt%) of nutmeg filler. The effect of nutmeg filler concentration on mechanical, thermal, antimicrobial and anti-aging properties of PU composite foams was investigated. PU foams were examined by rheological behavior, processing parameters, cellular structure (Scanning Electron Microscopy analysis), mechanical properties (compression test, impact test, three-point bending test, impact strength), thermal properties (Thermogravimetric Analysis), viscoelastic behavior (Dynamic Mechanical Analysis) as well as selected application properties (thermal conductivity, flammability, apparent density, dimensional stability, surface hydrophobicity, water absorption, color characteristic). In order to Disc Diffusion Method, all PU composites were tested against selected bacteria (Escherichia coli and Staphylococcus aureus). Based on the results, it can be concluded that the addition of 1 wt% of nutmeg filler leads to PU composite foams with improved compression strength (e.g. improvement by ~19%), higher flexural strength (e.g. increase of ~11%), improved impact strength (e.g. increase of ~32%) and comparable thermal conductivity (0.023–0.034 W m−1 K−1). Moreover, the incorporation of nutmeg filler has a positive effect on the fire resistance of PU materials. For example, the results from the cone calorimeter test showed that the incorporation of 5 wt% of nutmeg filler significantly reduced the peak of heat release rate (pHRR) by ca. 60% compared with that of unmodified PU foam. It has been also proved that nutmeg filler may act as a natural anti-aging compound of PU foams. The incorporation of nutmeg filler in each amount successfully improved the stabilization of PU composite foams. Based on the antibacterial results, it has been shown that the addition of nutmeg filler significantly improved the antibacterial properties of PU composite foams against both Gram-positive and Gram-negative bacteria.  相似文献   

20.
Owing to poor bonding between coarse fly ash particles and hydration products, gap-graded blended cements with fly ash usually show lower compressive strengths than Portland cement. Surface cementitious properties of coarse fly ash were improved by dehydration and rehydration processes in the present study. The results show that during the calcination at 750?°C, C?CS?CH gel is mainly transformed into a new nesosilicate, which is similar to a less crystalline C2S. The formation of melilite from hydration products is also noticed at 900?°C, however, this will not contribute to rehydration of calcined fly ash. Rehydration of new generated nesosilicate on the surface of coarse fly ash leads to a better bonding between coarse fly ash particles and hydration products. As a result, both early and late mechanical properties of gap-graded blended cements containing 25% cement clinker and 39% calcined coarse fly ash are higher than those of 100% Portland cements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号