首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
EPR spectroscopy has been applied to measure free radicals in vivo; however, respiratory, cardiac, and other movements of living animals are a major source of noise and spectral distortion. Sample motions result in changes in resonator frequency, Q, and coupling. These instabilities limit the applications that can be performed and the quality of data that can be obtained. Therefore, it is of great importance to develop resonators with automatic tuning and automatic coupling capability. We report the development of automatic tuning and automatic coupling provisions for a 750-MHz transversely oriented electric field reentrant resonator using two electronically tunable high Q hyperabrupt varactor diodes and feedback loops. In both moving phantoms and living mice, these automatic coupling control and automatic tuning control provisions resulted in an 8- to 10-fold increase in signal-to-noise ratio.  相似文献   

2.
We demonstrate that the superposition of light polarization states is coherently transferred to electron spins in a semiconductor quantum well. By using time-resolved Kerr rotation, we observe the initial phase of Larmor precession of electron spins whose coherence is transferred from light. To break the electron-hole spin entanglement, we utilized the big discrepancy between the transverse g factors of electrons and light-holes. The result encourages us to make a quantum media converter between flying photon qubits and stationary electron-spin qubits in semiconductors.  相似文献   

3.
In this paper, we analyze the quantum discord of electron spins of noninteracting electron gases. Our results imply that the quantum discord depends on the relative distance between the two electrons and the temperature. By a comparison between the quantum discord and the entanglement of formation, we find that the quantum discord is more robust than the entanglement of formation in the sense that the quantum discord takes a zero value only at discrete points of the range of the relative distance whereas the entanglement of formation can disappear for a finite relative distance.  相似文献   

4.
We propose a torsional resonator that couples to the transverse spin dipole of an attached sample. The absence of relative motion eliminates a source of friction that would otherwise hinder nanoscale implementation. Enhanced spontaneous emission induced by the resonator relaxes the longitudinal spin dipole at a rate of ~1 s?1 in the low-temperature limit. With signal averaging, single-proton magnetic resonance spectroscopy appears feasible at ~10 mK and a high magnetic field, while single-shot sensitivity is practical for samples with at least tens of protons in a volume of ~5 nm3.  相似文献   

5.
Fredy Zypman 《Physica A》2011,390(6):1124-1130
We introduce a concrete random model system to study the concept of parametric ergodicity. It consists of a continuum mechanical cavity with an embedded random mass distribution, constrained by a parametrized boundary condition. The interest is twofold. On one hand, there is the practical interest of obtaining ensemble averages of physical quantities from a small number of experimentally available samples, in many cases only one. This is typically the case in studies on conductance fluctuations through disorder mesosocopic systems. On the other hand we want to develop more insight into the meaning of parametric ergodicity. For this, we focus on the statistical distribution of resonant frequency generated by the ensemble of random samples, and how to produce the same distribution from a single sample subject to changing a boundary condition — the external parameter. The paper shows how the changing of the boundary condition is equivalent to scanning the ensemble of equivalent samples.  相似文献   

6.
We report on a method for single-shot readout of spin states in a semiconductor quantum dot that is robust against charge noise and can be used even when the electron temperature exceeds the energy splitting between the states. The spin states are first correlated to different charge states using a spin dependence of the tunnel rates. A subsequent fast measurement of the charge on the dot then reveals the original spin state. The method is analyzed theoretically, and compared to a previously used method. We experimentally demonstrate the method by performing readout of the two-electron spin states, achieving a single-shot visibility of more than 80%. We find very long triplet-to-singlet relaxation times (up to several milliseconds), with a strong dependence on in-plane magnetic field.  相似文献   

7.
The shift of the optical absorption edge in ferromagnetic semiconductors is investigated theoretically with a model, in which a conduction electron is coupled by exchange to the ion spins. The effect of long and short range ion correlations on the electron energy is calculated for high temperatures, in the critical region and with the spin wave approximation.  相似文献   

8.
In order to raise the sensitivity of microwave electron-paramagnetic-resonance (EPR) spectrometers, it is proposed to use a piece of ferroelectric material as an additional resonator. The method has been tested using the RE-1307 microwave EPR spectrometer and a pulsed microwave spectrometer. The possibility of raising the signal-to-noise ratio when using ferroelectric resonators of rectangular-parallelepiped and spherical shape has been considered. For a potassium-tantalate ferroelectric resonator of rectangular-parallelepiped shape, the signal-to-noise ratio has been raised by a factor of 16 at 331 K and by a factor of 10 at 292 K. In the pulse experiment, the presence of the ferroelectric resonator permits a reduction in microwave power, required for sample saturation, by a factor of 50 at 50 K.  相似文献   

9.
10.
A new dye laser spectrometer utilizing a non-tunable reference resonator is described. The resonator consists of two Zerodur mirrors optically contacted to a Zerodur spacer. Frequency scanning of the laser is provided by acoustooptic modulation. Residual drifts of the resonator frequency — measured on line — are compensated automatically by corresponding corrections of the modulation frequency. The stability during several hours and the resettability of the dye laser frequency are±2.5 kHz and±10 kHz, respectively.  相似文献   

11.
A novel EPR stopped-flow accessory is described which allows time-dependent cw-EPR measurements of rate constants of reactions involving paramagnetic species after rapid mixing of two liquid reagents. The EPR stopped-flow design represents a state-of-the-art, computer controlled fluid driving system, a miniresonant EPR structure with an integrated small ball mixer, and a stopping valve. The X-band EPR detection system is an improved version of that reported by Sienkiewicz et al. [Rev. Sci. Instr. 65 (1994) 68], and utilizes a resonator with two stacked ceramic dielectric rings separated by a variable spacer. The resonator with the mode TE(H)011 is tailored particularly for conditions of fast flowing and rapidly stopped aqueous solutions, and for a high time resolution. The short distance between the ball mixer and the small EPR active volume (1.8 microl) yields a measured dead time of 330 micros. A compact assembly of all parts results in minimization of disturbing microphonics. The computer controlled driving system from BioLogic with two independent stepping motors was optimized for EPR stopped-flow with a hard-stop valve. Performance tests on the EPR spectrometer ESP 300E from BRUKER using redox reactions of nitroxide radicals revealed the EPR stopped-flow accessory as an advanced, versatile, and reliable instrument with high reproducibility.  相似文献   

12.
The influence of the lens effect on the electron paramagnetic resonance (EPR) signal intensity was investigated in a loop-gap resonator (LGR) with an inner diameter of 41 mm. TheQ- value and EPR signal intensity were measured when the phantoms containing 3-carbamoyl-2,2,5,5-tetramethyl-pyrrolidin-l-yloxy dissolved in sodium chloride aqueous solutions were put in the LGR. TheQ- value and signal intensity reduced with increasing concentrations of sodium chloride in the phantom, indicating that the imaginary part of the dielectric constant is larger in the phantom with the higher concentration of sodium chloride. However, relationships betweenQ-values of the resonator and EPR signal intensities were not proportional and signal intensities were relatively higher compared with theQ-values. These findings suggest that the signal reduction due to lowQ is slightly compensated by the lens effect in the sample with the large real part of the dielectric constant. In the distribution of the signal intensities of a pinpoint sample made of diphenylpicrylhydrazyl in the agar medium containing sodium chloride in the LGR, it was found that the signal intensity decreased according to the distance from the center and the difference in the signal intensity within 10 mm from the center was about 20%, indicating the inhomogeneity of the alternating magnetic field at the center and marginal region in the sample with the large dielectric constant caused by the lens effect.  相似文献   

13.
本文报道了一台低能电子解离贴附质谱装置的设计.此装置采用余摆线型电子单色器和四极质谱计等技术,用于研究低能电子与分子的解离性贴附动力学过程.与其它国外类似装置相比,本装置的设计具有高低能电子单色器能量分辨率、优化电源系统、实现计算机控制等特点.  相似文献   

14.
We calculate the external forces outside of the surface of a layered electron gas (LEG). The LEG is a model of a metal where the electrical current is carried in parallel layers, and there is no current between layers. It describes the high-temperature cuprate superconductors and many other layered solids. We calculate the image potential from an external charge, the van der Waals potential from a neutral atom and the Casimir force between the parallel surfaces of two LEGs. Our theory does not use dielectric functions. We write down the quantum mechanical Hamiltonian, calculate the exact ground state energy and deduce the forces from the energy. We also show that the LEG has no surface plasmon.  相似文献   

15.
16.
We review the progress and main challenges in implementing large-scale quantum computing by optical control of electron spins in quantum dots (QDs). Relevant systems include self-assembled QDs of III–V or II–VI compound semiconductors (such as InGaAs and CdSe), monolayer fluctuation QDs in compound semiconductor quantum wells, and impurity centres in solids, such as P-donors in silicon and nitrogen-vacancy centres in diamond. The decoherence of the electron spin qubits is discussed and various schemes for countering the decoherence problem are reviewed. We put forward designs of local nodes consisting of a few qubits which can be individually addressed and controlled. Remotely separated local nodes are connected by photonic structures (microcavities and waveguides) to form a large-scale distributed quantum system or a quantum network. The operation of the quantum network consists of optical control of a single electron spin, coupling of two spins in a local nodes, optically controlled quantum interfacing between stationary spin qubits in QDs and flying photon qubits in waveguides, rapid initialization of spin qubits and qubit-specific single-shot non-demolition quantum measurement. The rapid qubit initialization may be realized by selectively enhancing certain entropy dumping channels via phonon or photon baths. The single-shot quantum measurement may be in situ implemented through the integrated photonic network. The relevance of quantum non-demolition measurement to large-scale quantum computation is discussed. To illustrate the feasibility and demand, the resources are estimated for the benchmark problem of factorizing 15 with Shor's algorithm.  相似文献   

17.
We report Stark shift measurements for 121Sb donor electron spins in silicon using pulsed electron spin resonance. Interdigitated metal gates on a Sb-implanted 28Si epilayer are used to apply the electric fields. Two quadratic Stark effects are resolved: a decrease of the hyperfine coupling between electron and nuclear spins of the donor and a decrease in electron Zeeman g factor. The hyperfine term prevails at magnetic fields of 0.35 T, while the g factor term is expected to dominate at higher magnetic fields. We discuss the results in the context of the Kane model quantum computer.  相似文献   

18.
Dephasing of optically generated electron spins in the presence of the external magnetic field and electric bias in semiconductor nano-structures has been studied by time- and polarization-resolved spectrometry. The obtained experimental data are presented in dependence of the strength of the magnetic field. The optically generated electron-spin precession frequency and dephasing time and rate are estimated. It is found that both the spin precession frequency and dephasing rate increase linearly with the external magnetic field up to about 9 T. However, the spin dephasing time is within sub-μs and is found to decrease exponentially with the strength of the external magnetic field. The results are discussed by exploring possible mechanisms of spin dephasing in low-dimensional semiconductor structures, where the quantum-confinement persists within the nano-range.  相似文献   

19.
A nucleus (Z, A) may capture two atomic electrons to become (Z ? 2, A). For Majorana neutrinos this may occur with no neutrino emission, the process is a virtual mixing of the parent atom and the daughter atom with two electron holes. The process becomes real as the daughter atom de-excites. In some cases where the daughter nucleus is excited, the neutrinoless decay may be enhanced by its proximity to a virtual resonance. We identify the 112Sn112Cd transition as a good case. The no-neutrino lifetime for mν = 30 eV ranges from 1022 to 1027 years as a function of the insufficiently well determined distance to resonance. The signatures of the two- or no-neutrino modes are very different.  相似文献   

20.
Loop-gap resonator (LGR) technology has been extended to W-band (94GHz). One output of a multiarm Q-band (35GHz) EPR bridge was translated to W-band for sample irradiation by mixing with 59 GHz; similarly, the EPR signal was translated back to Q-band for detection. A cavity resonant in the cylindrical TE011 mode suitable for use with 100 kHz field modulation has also been developed. Results using microwave frequency modulation (FM) at 50 kHz as an alternative to magnetic field modulation are described. FM was accomplished by modulating a varactor coupled to the 59 GHz oscillator. A spin-label study of sensitivity was performed under conditions of overmodulation and gamma2H1(2)T1T2<1. EPR spectra were obtained, both absorption and dispersion, by lock-in detection at the fundamental modulation frequency (50 kHz), and also at the second and third harmonics (100 and 150 kHz). Source noise was deleterious in first harmonic spectra, but was very low in second and third harmonic spectra. First harmonic microwave FM was transferred to microwave modulation at second and third harmonics by the spins, thus satisfying the "transfer of modulation" principle. The loaded Q-value of the LGR with sample was 90 (i.e., a bandwidth between 3 dB points of about 1 GHz), the resonator efficiency parameter was calculated to be 9.3 G at one W incident power, and the frequency deviation was 11.3 MHz p-p, which is equivalent to a field modulation amplitude of 4 G. W-band EPR using an LGR is a favorable configuration for microwave FM experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号