首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Steady-state and time-resolved techniques were employed to study the excited-state proton transfer (ESPT) from d-luciferin, the natural substrate of the firefly luciferase, to the mild acetate base in aqueous solutions. We found that in 1 M aqueous solutions of acetate or higher, a proton transfer (PT) process to the acetate takes place within 30 ps in both H(2)O and D(2)O solutions. The time-resolved emission signal is composed of three components. We found that the short-time component decay time is 300 and 600 fs in H(2)O and D(2)O, respectively. This component is attributed either to a PT process via the shortest water bridged complex available, ROH··H(2)O··Ac(-), or to PT taking place within a contact ion pair. The second time component of 2000 and 3000 fs for H(2)O and D(2)O, respectively, is attributed to ROH* acetate complex, whose proton wire is longer by one water molecule. The decay rate of the third, long-time component is proportional to the acetate concentration. We attribute it to the diffusion-assisted reaction as well as to PT process to the solvent.  相似文献   

2.
Femtosecond transient absorption spectroscopy was used to study singlet diphenylcarbene generated by photodissociation of diphenyldiazomethane with a UV pulse at 266 nm. Absorption by singlet diphenylcarbene was detected and characterized for the first time. Similar band shapes were observed in acetonitrile and in cyclohexane with lambda(max) approximately 370 nm. The singlet absorption decays by intersystem crossing to triplet diphenylcarbene at rates that agree with previous measurements. The singlet absorption band is completely formed 1 ps after the pump pulse. It is preceded by a strong and broad absorption band, which is tentatively assigned to excited-state absorption by a singlet diazo excited state. In neat alcohol solvents the growth and decay of the diphenylmethyl cation was observed. This species is formed by proton transfer from an alcohol molecule to singlet diphenylcarbene. Since a shell of solvent molecules surrounds each nascent carbene, the intrinsic rate of protonation in the absence of diffusion could be measured. In methanol, proton transfer occurs with a time constant of 9.0 ps, making this the fastest known intermolecular proton-transfer reaction to carbon. In O-deuterated methanol proton transfer occurs in 15.0 ps. Slower rates were observed in the longer alcohols. The protonation times correlate reasonably well with solvation times in these alcohols, suggesting that solvent fluctuations are the rate-limiting step. In all alcohols studied, the carbocations decay on a somewhat slower time scale to yield diphenylalkyl ethers. In methanol and ethanol the rate of decay is determined by reaction with neutral solvent nucleophiles. There is evidence in 2-propanol that geminate reaction within the initial ion pair is faster than reaction with solvent. No isotope effect was observed for the reaction of the diphenylmethyl carbocation in methanol. Using comparative actinometry the quantum yield of protonation was measured. In methanol, the quantum yield of carbocations reaches a maximum value of 0.18 approximately 18 ps after the pump pulse. According to our analysis, 30% of the photoexcited diazo precursor molecules are eventually protonated. Somewhat lower protonation efficiencies are observed in the other alcohols. Because the primary quantum yield for formation of singlet diphenylcarbene is still unknown, the importance of reaction channels that might exist in addition to protonation cannot be determined at present. Singlet carbenes are powerful, photogenerated bases that open new possibilities for fundamental studies of proton transfer in solution.  相似文献   

3.
We study the mechanism of proton transfer (PT) between the photoacid 8-hydroxy-1,3, 6-pyrenetrisulfonic acid (HPTS) and the base chloroacetate in aqueous solution. We investigate both proton and deuteron transfer reactions in solutions with base concentrations ranging from 0.25 M to 4 M. Using femtosecond midinfrared spectroscopy, we probe the vibrational responses of HPTS, its conjugate photobase, the hydrated proton/deuteron, and chloroacetate. The measurement of these four resonances allows us to follow the sequence of proton departure from the acid, its uptake by the water solvent, and its arrival at the base. In recent studies it was shown that proton transfer to carboxylate bases proceeds via Grotthuss conduction through a water wire connecting the acid and the base [Mohammed et al., Science 310, 83 (2005);Agnew. Chem. Int. Ed. 46, 1458 (2007);Siwick and Bakker, J. Am. Chem. Soc. 129, 13412 (2007); J. Phys. Chem. B 112, 378 (2008)]. Here we show that, for the weaker base chloroacetate, an alternative channel for proton transfer arises. In this channel the proton is first transferred to the water solvent and only later taken up from the water by the base. We study the base concentration dependence of the two competing channels.  相似文献   

4.
We investigate one of the fundamental reactions in solutions, the neutralization of an acid by a base. We use a photoacid, 8-hydroxy-1,3,6-trisulfonate-pyrene (HPTS; pyranine), which upon photoexcitation reacts with acetate under transfer of a deuteron (solvent: deuterated water). We analyze in detail the resulting bimodal reaction dynamics between the photoacid and the base, the first report on which was recently published. We have ascribed the bimodal proton-transfer dynamics to contributions from preformed hydrogen bonding complexes and from initially uncomplexed acid and base. We report on the observation of an additional (6 ps)(-1) contribution to the reaction rate constant. As before, we analyze the slower part of the reaction within the framework of the diffusion model and the fastest part by a static, sub-150 fs reaction rate. Adding the second static term considerably improves the overall modeling of the experimental results. It also allows to connect experimentally the diffusion controlled bimolecular reaction models as defined by Eigen-Weller and by Collins-Kimball. Our findings are in agreement with a three-stage mechanism for liquid phase intermolecular proton transfer: mutual diffusion of acid and base to form a "loose" encounter complex, followed by reorganization of the solvent shells and by "tightening" of the acid-base encounter complex. These rearrangements last a few picoseconds and enable a prompt proton transfer along the reaction coordinate, which occurs faster than our time resolution of 150 fs. Alternative models for the explanation of the slower "on-contact" reaction time of the loose encounter complex in terms of proton transmission through a von Grotthuss mechanism are also discussed.  相似文献   

5.
We study the mechanism of proton transfer (PT) in the aqueous acid-base reaction between the photoacid 8-hydroxy-1,3,6-pyrenetrisulfonic acid (HPTS) and acetate by probing the vibrational resonances of HPTS, acetate, and the hydrated proton with femtosecond mid-infrared laser pulses. We find that PT takes place in a distribution of hydrogen-bound reaction complexes that differ in the number of water molecules separating the acid and the base. The number of intervening water molecules ranges from 0 to 5, which, together with a strongly distance-dependent PT rate, explains the observed highly nonexponential reaction kinetics. The kinetic isotope effect for the reaction is determined to be 1.5, indicating that tunneling does not play a significant role in the transfer of the proton. Rather, the transfer mechanism is best described in terms of the adiabatic PT picture as it has been formulated by Hynes and co-workers [Staib, A.; Borgis, D.; Hynes, J. T. J. Chem. Phys. 1995, 102, 2487. Ando, K.; Hynes, J. T. J. Phys. Chem. B 1997, 101, 10464.], where solvent fluctuations play an essential role in forming the correct hydrogen-bond configuration and solvent polarization to facilitate PT.  相似文献   

6.
A femtosecond pump-probe, with approximately 150 fs resolution, as well as time-correlated single photon counting with approximately 10 ps resolution techniques are used to probe the excited-state intermolecular proton transfer from HPTS to water. The pump-probe signal consists of two ultrafast components (approximately 0.8 and 3 ps) that precede the relatively slow (approximately 100 ps) component. From a comparative study of the excited acid properties in water and methanol and of its conjugate base in basic solution of water, we propose a modified mechanism for the ESPT consisting of two reactive steps followed by a diffusive step. In the first, fast, step the photoacid dissociates at about 10 ps to form a contact ion pair RO-*...H3O+. The contact ion pair recombines efficiently to re-form the photoacid with a recombination rate constant twice as large as the dissociation rate constant. The first-step equilibrium constant value is about 0.5 and thus, at short times, <10 ps, only approximately 30% of the excited photoacid molecules are in the form of the conjugated base-proton contact ion pair. In the second, slower, step, of about 100 ps, the proton is separated by at least one water molecule from the conjugate base RO-. The separated proton and the conjugated base can recombine geminately as described by our previous diffusion-assisted model. The new two-step reactive model predicts that the population of the ROH form of HPTS will decrease with two time constants and the RO- population will increase by the same time constants. The proposed model fits the experimental data of this study as well as previous published experimental data.  相似文献   

7.
Steady-state and time-resolved emission spectroscopy techniques were employed to study the excited-state proton transfer (ESPT) to water and D(2)O from QCy7, a recently synthesized near-infrared (NIR)-emissive dye with a fluorescence band maximum at 700 nm. We found that the ESPT rate constant, k(PT), of QCy7 excited from its protonated form, ROH, is ~1.5 × 10(12) s(-1). This is the highest ever reported value in the literature thus far, and it is comparable to the reciprocal of the longest solvation dynamics time component in water, τ(S) = 0.8 ps. We found a kinetic isotope effect (KIE) on the ESPT rate of ~1.7. This value is lower than that of weaker photoacids, which usually have KIE value of ~3, but comparable to the KIE on proton diffusion in water of ~1.45, for which the average time of proton transfer between adjacent water molecules is similar to that of QCy7.  相似文献   

8.
The excited-state double proton transfer of model DNA base pairs, 7-hydroxyquinoline dimers, in benzene has been investigated using picosecond time-resolved fluorescence spectroscopy. Upon excitation, whereas singly hydrogen-bonded noncyclic dimers do not go through tautomerization within the relaxation time of 1400 ps, doubly hydrogen-bonded cyclic dimers undergo excited-state double proton transfer on the time scale of 25 ps to form tautomeric dimers, which subsequently undergo a conformational change in 180 ps to produce singly hydrogen-bonded tautomers. The rate constant of the double proton transfer reaction is temperature-independent, showing a large kinetic isotope effect of 5.2, suggesting that the rate is governed mostly by tunneling.  相似文献   

9.
The excited-state proton transfer and subsequent intramolecular ion pair formation of a cupreidine-derived Cinchona organocatalyst () were studied in THF-water mixtures using picosecond time-resolved fluorescence together with global analysis. Full spectral and kinetic characterization of all the fluorescent species allowed us to monitor the 3-step process for the ion pair dissociation. In the first step, proton transfer occurs through a water "wire" from the 6-hydroxyquinoline unit (excited-state acid) to the covalently bonded basic quinuclidine moiety, resulting in a hydrogen bonded ion pair. This was confirmed by the observed kinetic isotope effect in the presence of heavy water. In the second step, the formed ions are further solvated by a few solvent molecules, producing the solvent separated ion pair. Finally, a fully solvated ion pair is formed. The 5-exponential global model derived from the reaction scheme describes the experimental data very well.  相似文献   

10.
The excited-state double proton transfer of model DNA base pairs, 7-azaindole (7AI) dimers, is explored in a low-temperature organic glass of n-dodecane using picosecond time-resolved fluorescence spectroscopy. Reaction mechanisms are found to depend on the conformations of 7AI dimers at the moment of excitation; whereas planar conformers tautomerize rapidly (<10 ps), twisted conformers undergo double proton transfer to form tautomeric dimers on the time scale of 250 ps at 8 K. The proton transfer is found to consist of two orthogonal steps: precursor-configurational optimization and intrinsic proton transfer via tunneling. The rate is almost isotope independent at cryogenic temperatures because configurational optimization is the rate-determining step of the overall proton transfer. This optimization is assisted by lattice vibrations below 150 K or by librational motions above 150 K.  相似文献   

11.
TDDFT calculations, picosecond transient absorption, and time-resolved fluorescence studies of 4-dimethylamino-2-hydroxy-benzaldehyde (DMAHBA) have been carried out to study the electron and proton transfer processes in polar (acetonitrile) and nonpolar (n-hexane) solvents. In n-hexane, the transient absorption (TA) as well as the fluorescence originate from the ππ* state of the keto form (with the carbonyl group in the benzaldehyde ring), which is produced by an intramolecular proton transfer from the initially excited ππ* state of the enol form (OH group in the ring). The decay rate of TA and fluorescence are essentially identical in n-hexane. In acetonitrile, on the other hand, the TA exhibits features that can be assigned to the highly polar twisted intramolecular charge transfer (TICT) states of enol forms, as evidenced by the similarity of the absorption to the TICT-state absorption spectra of the closely related 4-dimethylaminobenzaldehyde (DMABA). As expected, the decay rate of the TICT-state of DMAHBA is different from the fluorescence lifetime of the ππ* state of the keto form. The occurrence of the proton and electron transfers in acetonitrile is in good agreement with the predictions of the TDDFT calculations. The very short-lived (~1 ps) fluorescence from the ππ* state of the enol form has been observed at about 380 nm in n-hexane and at about 400 nm in acetonitrile.  相似文献   

12.
An umbrella sampling approach based on the vibrational energy gap is presented and examined for exploring the reaction coordinate for a proton transfer (PT) reaction. The technique exploits the fact that for a PT reaction the energy gap between the vibrational ground and excited states of the transferring proton reaches a minimum at the transition state. Umbrella sampling is used within mixed quantum-classical simulations to identify the transition state configurations and explore the reaction free energy curve and vibrationally nonadiabatic coupling. The method is illustrated by application to a model phenol-amine proton transfer reaction complex in a nanoconfined solvent. The results from this new umbrella sampling approach are consistent with those obtained from previous umbrella sampling calculations based on a collective solvent coordinate. This sampling approach further provides insight into the vibrationally nonadiabatic coupling for the proton transfer reaction and has potential for simulating vibrational spectra of PT reaction complexes in solution.  相似文献   

13.
The aqueous phase of water/AOT reversed micelles having varying diameters was probed by a single free diffusing proton that was released form a hydrophilic photoacid molecule (2-naphthol-6,8-disulfonate). The fluorescence decay signals were reconstructed through the geminate recombination algorithm, accounting for the reversible nature of the proton-transfer reactions at the surface of the excited molecule and at the water/detergent interface. The radial diffusion of the proton inside the aqueous phase was calculated accounting for both the entropy of dilution and the total electrostatic energy of the ion pair, consisting of the pair-energy and self-energy of the ions. The analysis implied that micellar surface must be modeled with atomic resolution, assuming that the sulfono residue protrudes above the water/hydrocarbon interface by approximately 2 A. The analysis of the fluorescence decay curves implies that the molecule is located in a solvent with physical-chemical properties very similar to bulk water, except for the dielectric constant. For reversed micelles with r(max) > or = 16 A, the dielectric constant of the aqueous phase was approximately 70 and for smaller micelles, where approximately 60% of the water molecule is in contact with the van der Waals surface of the micelle, it is as low as 60. This reduction is a reflection of the increased fraction of water molecule that is in close interaction with the micelle surface.  相似文献   

14.
Excited-state proton transfer (ESPT) of pyranine (8-hydroxypyrene-1,3,6-trisulfonate, HPTS) is studied in a polymer-surfactant aggregate using femtosecond emission spectroscopy. The polymer-surfactant aggregate is a supramolecular assembly consisting of a triblock copolymer (PEO)(20)-(PPO)(70)-(PEO)(20) (P123) and a cationic surfactant, cetyltrimethylammonium chloride (CTAC). ESPT of the protonated species (HA) in HPTS leads to the formation of A(-). The dynamics of ESPT may be followed from the decay of the HA emission (at approximately 440 nm) and rise of the A(-) emission (at approximately 550 nm). Both steady-state and time-resolved studies suggest that ESPT of HPTS in P123-CTAC aggregate is much slower than that in bulk water, in P123 micelle, or in CTAC micelle. The ratio of the steady-state emission intensities (HA/A(-)) in P123-CTAC aggregate is 2.2. This ratio is approximately 50, 12, and 2 times higher than that respectively in water, in P123 micelle, and in CTAC micelle. Retardation of ESPT causes an increase in the rise time of the A(-) emission of HPTS. In P123-CTAC aggregate, A(-) displays three rise times: 30, 250, and 2400 ps. These rise times are longer than those in CTAC micelle (23, 250, and 1800 ps), in bulk water (0.3, 3, and 90 ps), and in P123 micelle (15 and 750 ps). The rate constants for initial proton transfer, recombination, and dissociation of the ion pair are estimated using a simple kinetic scheme. The slow fluorescence anisotropy decay of HPTS in P123-CTAC aggregate is analyzed in terms of the wobbling-in-cone model.  相似文献   

15.
Although the late (t>1 ps) photoisomerization steps in Schiff bases have been described in good detail, some aspects of the ultrafast (sub-100 fs) proton transfer process, including the possible existence of an energy barrier, still require experimental assessment. In this contribution we present femtosecond fluorescence up-conversion studies to characterize the excited state enol to cis-keto tautomerization through measurements of the transient molecular emission. Salicylideneaniline and salicylidene-1-naphthylamine were examined in acetonitrile solutions. We have resolved sub-100 fs and sub-0.5 ps emission components which are attributed to the decay of the locally excited enol form and to vibrationally excited states as they transit to the relaxed cis-keto species in the first electronically excited state. From the early spectral evolution, the lack of a deuterium isotope effect, and the kinetics measured with different amounts of excess vibrational energy, it is concluded that the intramolecular proton transfer in the S1 surface occurs as a barrierless process where the initial wave packet evolves in a repulsive potential toward the cis-keto form in a time scale of about 50 fs. The absence of an energy barrier suggests the participation of normal modes which modulate the donor to acceptor distance, thus reducing the potential energy during the intramolecular proton transfer.  相似文献   

16.
Fluorescence spectroscopy and femtosecond relaxation dynamics of 2-{[2-(2-hydroxyphenyl)benzo[d]oxazol-6-yl]methylene}malononitrile (diCN-HBO) and 2-{[2-(2-hydroxyphenyl)benzo[d]thiazol-6-yl]methylene}malononitrile (diCN-HBT) are studied to probe the excited-state proton transfer (ESPT) coupled charge transfer (ESCT) reaction. Unlike most of the ESPT/ESCT systems previously designed, in which ESCT takes place prior to ESPT, both diCN-HBO and diCN-HBT undergo ESPT, concomitantly accompanied with the charge transfer process, such that the ESPT reaction dynamics are directly coupled with solvent polarization effects. The long-range solvent polarization interactions result in a solvent-induced barrier that affects the overall proton transfer reaction rate. In cyclohexane, the rate constant of ESPT of diCN-HBO is measured to be 1.1 ps (9.1 x 10(11) s(-1)), which is apparently slower than that of 150 fs for the parent molecule 2-(2'-hydroxyphenyl)benzoxazole (HBO). Upon increasing solvent polarity to, for example, CH 3CN, the rate of ESPT is increased to 300 fs (3.3 x 10(12) s(-1)). The results are rationalized by the stabilization of proton transfer tautomer, which possesses a large degree of charge transfer character via an increase of the solvent polarity, such that the corresponding solvent-induced barrier is reduced. We thus demonstrate a prototypical system in which the photon-induced nuclear motion (proton transfer) is directly coupled with solvent polarization and the corresponding mechanism is reminiscent of that applied in an electron transfer process.  相似文献   

17.
Excited state proton transfer (ESPT) in biologically relevant organic molecules in aqueous environments following photoexcitation is very crucial as the reorganization of polar solvents (solvation) in the locally excited (LE) state of the organic molecule plays an important role in the overall rate of the ESPT process. A clear evolution of the two photoinduced dynamics in a model ESPT probe 1-naphthol (NpOH) upon ultrafast photoexcitation is the motive of the present study. Herein, the detailed kinetics of the ESPT reaction of NpOH in water clusters formed in hydrophobic solvent are investigated. Distinct values of time constants associated with proton transfer and solvent relaxation have been achieved through picosecond-resolved fluorescence measurements. We have also used a model solvation probe Coumarin 500 (C500) to investigate the dynamics of solvation in the same environmental condition. The temperature dependent picosecond-resolved measurement of ESPT of NpOH and the dynamics of solvation from C500 identify the magnitude of intermolecular hydrogen bonding energy in the water cluster associated with the ultrafast ESPT process.  相似文献   

18.
In a previous study of ab initio dynamics, the proton transfer in bacteriorhodopsin from protonated asp96 in the cytoplasmic region toward the deprotonated Schiff base was investigated. A quantum mechanics/molecular mechanics model was constructed from the X-ray structure of bacteriorhodopsin E204Q mutant. In this model, asp96, asp85, and thr89 as well as most of the retinal chromophore and the Schiff base link of lys216 were treated quantum mechanically while the rest of the atoms were treated molecular mechanically. A channel was found in the X-ray structure allowing a water chain to form between the asp96 and Schiff base. In the present study, a chain of four waters from asp96 to the Schiff base N coupled with one branching water supports proton transfer as a concerted event in about 3.5 ps. With both a neutral asp85 and a branched water, the dynamics is now found to be more complicated than observed in the initial study for the transition from the photocycle late M state to the N state. Proton transfer is also observed from the Schiff base back to asp96 demonstrating that there is no effective barrier to proton transfer larger than kT in a strong H-bonded network. The binding of the branched water to the four water chains can dynamically hinder the proton transfer.  相似文献   

19.
In a previous work, we proposed an extended model for intermolecular excited-state proton transfer to the solvent. The model invoked an intermediate species, the contact ion-pair RO(-)...H(3)O(+), where a proton is strongly hydrogen bonded to the conjugated photabase RO(-). In this study we tested the extended model by measuring the transient absorption and emission of 8-hydroxypyrene-1,3,6-trisulfonate (HPTS) in an aqueous solution in the presence of a large concentration of mineral acids. In a neutral pH solution, the pump-probe signal consists of three time components, <1, 4, and 100 ps. The 4 ps time component, with a relative amplitude of about 0.3, was attributed to the formation of the contact ion-pair and the long 100 ps component to the dissociation of the ion-pair to a free proton and RO(-). In the presence of acid, the recombination of an excess proton competes with the geminate recombination. At a high acid concentration, the recombination process alters the time-dependent concentrations of the reactant, product and intermediate contact ion-pair. We observed that when the acid concentration increases, the amplitude of both the long and intermediate time components decreases. At about 3 M of acid, both components almost disappear. Model calculations of the acid effect on the transient HPTS signal indeed showed that the amplitude of the intermediate time component decreases as the excess proton concentration increases.  相似文献   

20.
A single exponential risetime is observed for the lautomer fluorescence of 3-hydroxyflavone in the absence of hydrogen-bonding impurities in the temperature range of 298—77 K. The observed risetime in hydrocarbon solvents is less than 8 ps at 298 K, while at 77 K it is 37 ± 6 ps. The discrepancy with other reports is attributed to hydrogen-bonding solvent impurities which inhibit the intramolecular proton transfer process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号